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Delay and QoS Aware Low Complex Optimal
Service Provisioning for Edge Computing

Taewoon Kim, Member, IEEE, Jenn-Wei Lin*, and Chi-Ting Hsieh

Abstract—Edge computing can be used as a distributed coun-
terpart of the cloud computing, and task offloading with much
shorter delays can be achieved. In general, edge servers are
resource-limited, but the services are becoming further diversified
to meet the ever-increasing user demand. When an edge server
cannot process the received service request of a particular service
type for not locally having the corresponding service execution
image, the request needs to be forwarded to another on which
the particular image is installed. In this paper, an optimal
scheduling method that forwards such requests is proposed by
using the variant multiple-knapsack framework. Then, to find
the optimal solution, we propose to reformulate it as an integer
linear program. As the problem size increases, however, the
problem easily becomes intractable, so we propose a distributed
solution by using both Lagrangian relaxation and decomposition
theory. To evaluate the effectiveness of the proposed approaches,
we carry out simulations with different network layouts and
with different request arrival scenarios. The evaluation results
show that the centralized Lagrange dual solution can yield near-
optimal solutions. In addition, the decomposed distributed solu-
tion can significantly reduce the computational and operational
complexity at the expense of the total reward.

Index Terms—Multi-Access Edge Computing, MEC Miss-
ing Problem, Service Request Forwarding, Variant Multiple-
Knapsack Problem, Lagrangian Relaxation.

I. INTRODUCTION

EDGE computing (EC) is a promising computing
paradigm where compute and storage resources are

placed at the network edge, in close proximity to end users.
Compared to the centralized cloud computing (CC), edge
computing has additional benefits such as reduced response
time, battery saving at the user devices, bandwidth saving, etc.
[1]. Nowadays, edge computing has been incorporated into the
mobile cellular network (e.g. 5G), called multi-access edge
computing (MEC), by having an edge server (ES) collocated
with one or more base stations (BSs) or with radio access
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networks (RANs) [2]. With such deployment, a substantial
amount of data can be stored, and computationally heavy tasks
can be processed near the mobile user. In addition, European
Telecommunications Standards Institute (ETSI) has initiated
the standardization for MEC by launching the MEC Industry
Specification Group (ISG) [3].

When providing a mobile data service or offloading service
with MEC, each ES (i.e., MEC server) has limited compu-
tation, communication, and storage capacities in general [4].
Therefore, it is impossible and inefficient to deploy all the
service execution images corresponding to different service
types at each ES, and thus, the service image deployment
strategies for MEC has been extensively studied [4]–[7]. In
addition, user mobility is another challenging issue. Regardless
of the mobile user’s location, an ES co-located with the BS
which the user is associated with is responsible for handling
the service requests from the mobile user. For not having
installed all the service execute images at ES, the MEC service
missing (MSM) problem may occur when the responsible ES
cannot provide the desired service to the received request
from a mobile user. In such a situation, the responsible ES
becomes a missing ES and the desired service request is a
missed request.

There are two possible solutions to the MSM problem in
general. One is service request forwarding, where the missed
request is forwarded from the missing ES to another serving
ES on which the service execution image for the missed
request is installed. The other is service image migration,
where the service execution image is migrated to the missing
ES [8]. In general, the migration approaches may cause a
service delay and non-trivial amount of data transmissions over
a wide area network (WAN); for example, the service image
migration for face recognition service takes 247 seconds on
a 5 Mbps WAN [9]. Also, it may cause a substantial service
delay [8].

In this paper, by utilizing the service request forwarding
technique, a dynamic MEC resource provisioning scheme is
proposed for a mobile network operator (MNO) as a solution
to the MSM problem. In general, each ES is installed with
the service execution images of some service types, but not
all due to the limited local computing and storage resource.
Therefore, the occurrence of missing requests is inevitable, and
it becomes important to optimally forward the missed requests
to serving ESs so that the expected quality of service (QoS)
is fulfilled while reducing the forwarding cost. In contrast to
the previous studies focusing only on either minimizing total
delay [10] or maximizing the number of forwarded missed
requests [11], we We consider both the priority of each request
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(or the QoS requirements) and the transmission delay from
forwarding to make the proposed solution more practical.
Also, by introducing a tunable objective function considering
the two at the same time, the MNO is able to easily adjust the
scheduling decision according to its preference.

To optimally solve the missed request allocation/forwarding
problem, we first formulate the MSM problem as a variable
multiple-knapsack (VMK) problem. The single knapsack prob-
lem is a well-known combinatorial optimization problem [12]–
[16], whereas the VMK problem is an extension with multiple
knapsacks of different capacities. The VMK formulation of
the missed request forwarding problem is then transformed
into an integer linear program (ILP), with which the optimal
solution can be computed with a computer solver. However,
the computation complexity of classic knapsack problem is
NP-hard [12]–[16], and the VMK problem is even more
difficult. Although advanced techniques, such as relaxation
and branch-and-bound/cut, can reduce the complexity of the
ILP significantly, ILP may not be feasible as an online method
especially when the problem size increases (see Section IV-D).
Many efforts have been made to reduce the problem com-
plexity by using techniques such as relaxation [11], [23]–[26].
However, they are centralized approaches, and thus they may
not scale well with the problem size. To significantly reduce
the complexity, we propose a distributed request forwarding
scheduling method. In particular, the Lagrangian relaxation
(LR) method [17] as well as Decomposition Theory [18] is
used in this work to solve the missed request forwarding
problem efficiently.

The main contributions of this paper are summarized as
follows.

• We study the MSM problem to effectively handle the
missed requests in a mobile MEC network, and propose
practical missed request forwarding solutions that can run
online by assuming ESs have different capacities and the
workload (i.e., users requests) is heterogeneous.

• As a solution to the MSM problem, we formulate the
optimal missed request forwarding problem by using the
VMK framework and then, transform it into ILP. The
objective is tunable, and is designed to jointly consider
priority and transmission delay of the forwarded missed
requests. By using the tunable weight parameters, MNO
can make a balance between QoS (priority) or delay.

• To reduce the computation complexity and to make
the proposed solution suitable for online processing,
we present a systematic approach for a low-complex
and real-time scheduling algorithms by using Lagrangian
relaxation and decomposition theory.

• We present a distributed MEC management method that
effectively selects ES managers and collects the required
information to solve the forwarding problem in a decen-
tralized manner. Also, we propose the message structures
to efficiently share such information among ESs.

• To show the effectiveness of the proposed solutions,
we make a performance comparison of the proposed
distributed approach against the optimal solution, con-
ventional algorithms, and state-of-the-art approaches.

TABLE I: Frequently used abbreviations and acronyms

BS Base Station
CC Cloud Computing
ES Edge Server (or MEC Server)

ESM Edge Server (or MEC Server) Manager
ILP Integer Linear Programming/Problem

MEC Multi-access Edge Computing
MNO Mobile Network Operator
MSM MEC Service Missing
QoS Quality of Service
RAN Radio Access Network
VMK Variable Multiple Knapsack

User

BS-n ES-n BS-m ES-m

WAN

(Wide Area Network)

User

Fig. 1: The assumed system model where an edge server is
collocated with a base station.

• We show the reduced complexity and convergence of the
proposed approaches, and analyze the results.

The rest of the paper is organized as follows. The assumed
system model and related work are introduced in Section II.
The proposed missed request forwarding scheme is presented
in Section III. In Section IV we evaluate the performance of
the proposed approaches and compare them to the optimal,
conventional, and state-of-the-art methods. Finally, Section V
concludes this paper. Table I summarizes the abbreviations and
acronyms that are frequently used throughout this paper.

II. PRELIMINARIES

This section presents the system model of the assumed mo-
bile MEC system. Then, the selected existing studies related
to the MSM problem considered in this paper are discussed.

A. System Model

The system model considered in this paper is depicted in
Fig. 1. An MNO provides data offloading services of different
service types over a large geographic area for its customers
(users). The area under service is decomposed into a number
of wireless coverage areas, each of which is deployed with a
BS to provide wireless connectivity to the users visiting the
area. A BS is also equipped (or collocated) with an ES which
processes the service requests from the users associated with
the BS. We assume the one-to-one relation between BS and
its co-located ES. However, when a BS does not have a co-
located ES, it forwards the received service requests to the
closest ES in terms of the transmission delay. In such case, an
ES is shared by multiple BSs. A user follows the closest-BS-
first rule for association [21], and the association is assumed
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not to change for the period of our interest. BSs as well as the
corresponding ESs are connected with each other by a wide
area network (WAN).

B. Related Work

There has been a substantial amount of studies on the
MSM problem. In [4], the authors proposed a content-centric
networking-based MEC service deployment and discovery
protocol, consisting of the following two stages. The 1) service
initiation stage deploys services in each ES. Thereafter, each of
the service requests from users is processed by a 2) discovery
procedure to determine an appropriate ES which may be the
local ES, a remote ES in the same region, or a remote ES
in other neighboring region. The discovery procedure chooses
the best ES to forward the received service request to, and it is
carried out by checking whether the measured round-trip time
(RTT) is within the delay constraint. The resource availability
at each candidate ES is important to prevent ESs from being
overflow and large queuing/processing delays, but it is not
discussed therein. Also, considering different preferences of
MNOs, QoS needs to take multiple factors into consideration,
but there is no such study in their work.

Sun et al. [19] studied task assignment and offloading
for multimedia MEC networks aiming at minimizing power
consumption. In their assume system, local processing at the
user device and MEC processing (i.e., offloading) mode are
supported. Their proposed solution decides on the processing
mode and the related resource assignment. Then, the authors
proposed a stochastic optimization model, and utilized the
Lyapunov technique to decompose the problem for complexity.
However, the proposed solution is multimedia application-
specific, and only a single BS-ES site is considered in their
system model, leaving the scalability issue unresolved. In
addition, due to the limited resources in an ES, the overflow
problem may occur, which is not discussed therein.

In [10], authors jointly considered the computation of-
floading, content caching, and network resource assignment
for delay-sensitive tasks. In their work, the content caching
is that the requested contents (e.g., program codes) can be
cached from the Internet to the ES, which help avoid du-
plicate transmissions of the same content. Their objective is
to minimize the total latency of all computation tasks. They
proposed a mixed integer nonlinear programming (MINLP)
problem formulation, and to obtain the solution the authors
proposed an asymmetric search tree and modified branch-
and-bound method. In addition, a low-complex solution is
proposed by using the generalized benders decomposition
method. However, the authors assumed a centralized single
BS-ES system model, and thus a further study is required
before applying their proposed solution to a practical, large-
scale network. While the authors focused only on minimizing
the total delay, it may not be the only concern for MNOs, and
thus it might be required to incorporate multiple factors into
the objective function.

In MEC systems, balancing the computation load among
ESs is important to prevent service outage or large queu-
ing/processing delays, and the authors in [20] analytically

studied different load balancing approaches. The considered
load sharing is carried out by re-directing users requests
to other ESs in either random or shortest-queue-length-first
manner. The analysis results show that the balanced system
can reduce blocking probability and waiting time. However,
all the considered methods are designed based on theoretical
queues (or multiple-knapsack problems with identical items
and knapsacks), and do not fully reflect the physical constraints
that a general MEC may encounter such as limited resource
at ES, request re-direction cost, etc. Moreover, due to the
simplicity of the considered methods, an in-depth study on
the optimality of the methods is missing therein.

In [21], authors studied the delay-sensitive MEC resource
provisioning and workload assignment problem, which is
divided into the following three tasks. The first task decides
on the number and the placement of ESs, the second task
determines the number and the placement of application
instances to deploy on the ESs, and the last task assigns
(or forwards) the service requests from users to suitable ESs
that can meet the processing and response time constraint.
The authors formulated the joint problem as a mixed integer
program minimizing the edge server deployment cost, and then
decompose it into the delay-aware load assignment and the
mobile ES dimensioning problems for complexity reduction.
Despite of the reduced complexity by decomposition, their
proposed approach is still centralized, and may suffer from
significant complexity burden as the network size increases.

Beraldi et al. [22] proposed a cooperative strategy among
nearby ESs to overcome their resource limitation. The pro-
posed CooLoad is a load sharing scheme aiming at minimizing
both the request blocking probability and the execution delay.
In short, upon receiving a service request when its buffer is
full, an ES passes the request to a nearby ES. The authors
modeled the network as a finite quasi birth and death Markov
process, and then studied the advantage of the proposed
CooLoad to the cooperation-forbidden counterpart. However,
the authors assumed a simple network with only two ESs, and
thus, their findings may not be applicable as it is to the general
scenarios with more ESs. Also, the authors assumed that the
transmission delay between two ES is negligible, which may
not be the case in a real network.

More recently, many efforts have been made to jointly
optimize service placement and request routing [11], [23]–
[26]. Poularakis et al. [23], [24] proposed a joint service
placement and request routing problem. If a received service
request can be processed by nearby ESs, it is routed to the
ESs. However, if there is no such ESs having the correspond-
ing service image or available resource, the user request is
forwarded to the centralized cloud. The overall goal is to
minimize the access to the centralized cloud. The optimization
problem is formulated with combinatorial variables, and then
to reduce time complexity, linear relaxation and randomized
rounding technique is used to obtain approximated solution.
Yuan et al. [25] proposed a low-complex solution to the joint
optimization problem by using a two time-scale framework.
The less frequent service placement and frequent request
routing are carried out by greedy-based approximated method
and linear relaxation-based heuristic scheme, respectively.
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TABLE II: Commonly used notations and variables

i ∈ I A particular missed request i in the total set of the
total missed requests I

k ∈ K A particular ES k in the entire set of ESs K
vik Forwarding reward vik from forwarding missed re-

quest i to ES k
w1, w2 Weights on QoS and delay from forwarding missed

requests
xik Forwarding decision of missed request i to ES k
ri Number of resource units required to process an in-

stance of missed request i
πk ES k’s resource budget
si Number of instances of missed request i to be sched-

uled for forwarding

Farhadi et al. [11] applied a similar time-scaled approach
with greedy service placement algorithm and linear relaxation-
based request scheduling algorithm. Lastly, Chen et al. [26]
proposed a Lyapunov-based approach to decompose the joint
optimization problem, and then applied the linear relaxation
and randomized rounding for complexity reduction. Despite
the close-to-optimality performance of the above methods and
their decomposition or relaxation-based complexity reduction,
they still are centralized method. As a result, a large amount
of information may need to be transferred to the decision-
making entity. Also, as the problem size grows, the CPU time
for optimization may increase as well, preventing real-time
scheduling.

The proposed method in this paper overcomes the limita-
tions of the aforementioned studies. First, we propose a low-
complex distributed framework for request forwarding that
reduces the amount of message exchange for optimization,
and runs in parallel, resulting in the huge reduction in CPU
time. Second, we propose a tunable objective so that MNO
can weigh its preference on different aspects such as QoS and
delays from forwarding particular requests. Lastly, we assume
a practical-scale, generalized configuration in that ESs have
different capacities and the workload (i.e., users requests) is
heterogeneous.

III. PROPOSED IDEA

In this section, we present a distributed missed request for-
warding solutions to the MSM problem, aiming at maximizing
the QoS with respect to the total serviced missed requests
while minimizing the total redirection cost. To optimize the
missed request forwarding and the two objectives together, we
formulate a variant multiple-knapsack (VMK) problem with
placement values reflecting the two factors. The VMK problem
is the extension of the well-known knapsack problem [12]–
[16] with the NP-hard time complexity. To avoid the high
computation overhead, we also propose a relaxed, iterative
algorithm that can run in parallel by leveraging the Lagrangian
relaxation (LR) method [17]. The commonly used notations
and variables are defined in Table II.

A. Definitions and Terminologies

Before elaborating the basic idea of the proposed scheme,
we first introduce the following definitions.

Definition 1: Service type yi and its execution image. A
mobile MEC system provides a fixed number of services
that are available to mobile users. Each service request of a
particular service type can be processed only by the ESs with
the corresponding service execution image installed.

Definition 2: Missing ES and the missed request of a ser-
vice type yi. Due to the resource limitation, each ES is in-
stalled with a few service execution images of different service
types. When a mobile user transmits a service request of yi to
its associated BS, the co-located ES (referred to as responsible
ES) may not have the corresponding service execution image.
In such a case, called MSM problem, the ES is called a missing
ES and the service request is referred to as missed request with
respect to yi.

Definition 3: Serving ES of service type yi. An ES having
the service execution image of service type yi is called a
serving ES with respect to yi. For a missed request of yi
received at a missing ES to be properly processed, it should be
redirected/forwarded to a serving ES of the particular service
type.

Definition 4: ES Manager, ESM. ESM schedules the for-
warding of missed requests, and there can be one or more
ESMs chosen by the proposed rule specified in Section III-D.
The former is a centralized approach, while the latter is a
distributed one. ESMs periodically collect the missed requests
and the ES states (i.e., installed service execution images and
available capacity) by using the proposed message format
defined in Fig. 3.

B. Basic Idea: Variable Multiple Knapsack (VMK) Problem

The proposed approach utilizes the VMK framework to for-
mulate the optimal forwarding problem. Thus, in this section,
we briefly introduce VMK and how it is used to schedule the
forwarding of missed requests.

Assume a set of items and multiple knapsacks. The goal
is to maximize the total values of items placed inside knap-
sacks. The VMK problem is the extension of the well-known
single knapsack problem [12]–[16], which has the following
characteristics: 1) There are multiple knapsacks with different
capacities, 2) Each item exists at a certain number of instances,
and they can be put into different knapsacks. However, a
single instance cannot be divided further, and 3) There may
exist placement or packing constraints In the case of MSM
problem, items and knapsacks in VMK correspond to missed
requests and ESs, respectively. The action of packing an item
into a knapsack in VMK becomes forwarding a missed request
to a serving ES in MSM problem. Also, an ES has limited
capacity with service constraints as knapsacks do in VMK.

Fig. 2a shows a small-scale mobile MEC network, where
there are six ESs from m1 to m6, and they provide some
of the three different service types, i.e., y1, y2, and y3. The
missing and serving ESs with respect to each service type at a
particular time are listed in Fig. 2b. Note that the values therein
are arbitrarily chosen. For the service type y1, missed requests
occurred at m1, m3, and m4 since these ESs are not pre-
installed with the execution image for y1. On the other hand,
ESs m2, m5, and m6 can act as the serving ES of y1 since
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Edge Server

Service Execution Image

yi

y2

y2

y2

y2

y1

y1

y1

y3

y3

m4

m2

m5

m3

m6

m1

(a) A small-scale system model.
Service type y1 y2 y3

Size (no. of resource units)

of each request
1 2 2

Missing 

ESs

ID m1, m3, m4 m1, m6

m2, m4, 

m5, m6

Number of 

requests 

received

3, 4, 4 3, 1 5, 4, 5, 2

Serving 

ESs

ID m2, m5, m6

m2, m3, 

m4, m5

m1, m3

Number of 

resource units 

available

5, 7, 1 5, 13, 9, 7 6, 13

(b) The missing and serving ESs in the system.

Fig. 2: An example scenario with six ESs and three service
types.

they have the execution image for y1. A missed request may be
forwarded to an ES if it has enough available resources and it
is installed with the service execution image for the particular
request. To optimally forward missed requests, it is required
for ESM to collects necessary information and makes decision.
Each ESM manages a set of ESs and their request forwarding.
Each ES passes i) the missed request information and ii) ES
state (i.e., the resource availability and the installed service
execution image information) to the corresponding ESM. An
ESM can also be a missing/serving ES of a service type.

In short, the overall procedure of the proposed method
consists of the following five steps. First, each ESM collects
the received missed request, available resource, and available
service information from the ES under its control (step 1).
ESMs exchange collected information in part or completely
with each other by using the proposed data structures in Fig. 3a
(step 2). The missed request forwarding problem is formed by
using the VMK structure (step 3). The VMK problem is then
transformed into an ILP (step 4). Finally, an optimal missed
request forwarding schedule is computed by either solving the
ILP directly or by using the Lagrangian relaxation (step 5).

C. Detailed Description

In this subsection, we will elaborate on the detailed opera-
tions of the proposed scheme.

1) Data Structure Formation: To solve either VMK or
MSM problem, the first step is to collect the items/capacities of
knapsacks or missed request list/ES state information, respec-
tively, where the ES state refers to the resources availability
and the installed service execution image information collected
by ESM. In this paper, we propose two data structures to
integrate such information as shown in Fig. 3a. Note that for
the remainder of this paper item and missed request are used

Missed request

            ID

Corresponding 

missing edge

    server ID

Associated

service type

Number of 

Instances

Size of each 

instance

Edge server ID
Corresponding

edge server ID

Service-type

provisioning set

(i.e., installed imgs)

Capacity

(no. available 

resource units)

Data structure for missed request

Data structure for edge server state

(a) Proposed data structure format.
Missed request

            ID

Corresponding 

missing ES ID

Associated 

service type

Number of 

instances

Size of each

   instance

i1 m1 y1 3 1

i2 m3 y1 4 1

i3 m4 y1 4 1

i4 m1 y2 3 2

i5 m6 y2 1 2

i6 m2 y3 5 2

i7 m4 y3 4 2

i8 m5 y3 5 2

i9 m6 y3 2 2

Edge server ID 
Corresponding 

ES ID

Service-type 

provisioning set

(installed imgs)

Capacity size

(no. avail. 

Resource units)

k1 m2 {y1, y2} 5

k2 m5 {y1, y2} 7

k3 m6 {y1} 1

k4 m3 {y2, y3} 13

k5 m4 {y2} 9

k6 m1 {y3} 6

(b) Example of information integration by using the proposed
data structures.

Fig. 3: Proposed data structure format and information inte-
gration.

interchangeably depending on the context, and so are knapsack
and ES.

In the data structure for ES state, there are two ES IDs. The
first ES ID is an shortened ID, arbitrarily assigned by ESM. On
the other hand, the following corresponding ES ID is a unique
and possibly long ID of the ES, such as IP [4] or MAC address.
The short ES ID is used by ESM for easy identification during
data integration and scheduling. However, once the forwarding
decision is made and announced, each ES needs to forward
missed requests to ESs according to the decision. Here is when
the unique ES ID is required to actually transfer the missed
requests over the network. Service-type provisioning set is the
list of the installed service execution images, and the capacity
tells the resource availability of the ES. In the data structure
for missed request, missed request ID is a short, arbitrarily
assigned ID. Corresponding missing ES ID is the unique ID
of the ES which first received the request. Associated service
type is the corresponding missed request’s service type, and
number of instances indicates how many instances exists in
the request. Note that each instance has different size which
is known by the size of each instance field.

Note that one of the ESM can be designated as the ESM
leader to perform the information gathering procedure among
ESMs. As shown in Fig. 2b and Fig. 3b, there are nine missed
request records collected by the three manager ESs, labelled
from i1 to i9. The first item i1 corresponds to the missed
request of the service type y1, and the corresponding missing
ES of this item is m1. The number of instances is 3, meaning
that there are three missed requests of the same type at the
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same ES, or one request consisting of three instances. The
instance size of this item is 1, which indicates the number
of required resource units for processing each instance of the
y1-type request.

For the case of Fig. 2 with six ESs, there are six ES
state records collected by the three manager ESs as shown
in Fig. 3b. The first ES state record corresponds to the ES
m2 of which resources can be used for providing service to
y1 and y2-type requests. With five available resource units in
m2, the capacity size is 5. Note that in Fig. 3b, the particular
numbers given to items and knapsacks are arbitrarily chosen.

2) MSM Problem Formulation by VMK Framework: The
information collected by using the above data structures can
be used as an input to the VMK problem to eventually solve
the MSM problem. To do so, an item-knapsack bipartite graph,
called BG, is formed to represent the placement relationship
between the items (missed requests) and knapsacks (serving
ES) in the VMK problem by using the following definitions.

Definition 5: A bipartite graph BG = (I,K,E) is a graph
whose nodes are divided into two disjoint sets I and K,
representing the items (missed requests) and knapsacks (ESs),
respectively. Each edge e ∈ E connects a node i ∈ I to a
node k ∈ K if the following collectable condition is met.
In the context of MSM problem, i ∈ I indicates a particular
missed request i in the entire set I at the moment, k ∈ K is
a particular ES k in the entire set K available at the moment,
and e ∈ E refers to a particular request forwarding decision e
among the all feasible decisions available E at the moment.

Definition 6: The collectable condition between i and k.
In a BG, if there exists an edge between i and k, item i can
be put into knapsack k. In such a case, i is called a collectable
item of k. In the context of MSM, an edge indicates that the
missed request i can be forwarded to serving ES k for further
processing.

Similar to traditional single knapsack problem, the goal of
VMK is to maximize the total value of the packed items. For
the proposed MSM problem, we apply the same approach, and
thus, it is important to define the value of placing a missed
request onto a serving ES. In general MEC applications, one
important objective is to maximize the QoS by forwarding
missed requests. At the same time, minimizing the forwarding
cost (e.g., transmission delay) needs to be carefully consid-
ered. In this regard, we propose a value function that jointly
considers both QoS and forwarding cost as below.

Definition 7: For an edge e(i, k) ∈ BG, an as-
sociated edge weight represents the placement value or
forwarding reward vik between missed request i and serving
ES k, which is defined as follows.

vik = fpri(pri(i)) · w1 + ftrans(trans(i, k)) · w2, (1)

where fpri and ftrans are the normalization or unit-scaling
functions, and a higher priority with a lower transmission cost
results in a higher forwarding reward. The function fpri(·)
normalizes the priority pri(i) of the associated service type of
i by (pri(i)−primin)/(primax−primin), where primax and
primin are the maximum and minimum priority values among
all service types, respectively. Similarly, ftrans(·) normalizes
the transmission cost trans(i, k) between the corresponding

Item Size

i1 3

i2 4

i3 4

i4 3

i5 1

i6 5

i7 4

i8 5

i9 2

Knapsack Capacity

k1 5

k2 7

k3 1

k4 13

k5 9

k6 6

Fig. 4: An example of item-knapsack bipartite graph, where
item and knapsack in the context of VMK refer to missed
request and ES, respectively, for the MSM problem.

missing ES of i and the corresponding serving ES k as
(transmax − trans(i, k))/(transmax − transmin), where
transmax and transmin are the maximum and minimum
transmission costs between any two ESs, respectively. In
general, transmission cost is regarded as transmission delay.
The parameters w1, w2 ∈ [0, 1], where w1 + w2 = 1, are
the contribution ratios or weights associated with priority and
transmission cost, respectively.

Each forwarding reward vik takes either a value in [0, 1]
if k is the serving ES of missed request i (i.e., collectable
condition is met) or N/A otherwise (non-collectable). In the
evaluation to be shown in Section IV, the forwarding rewards
are modified such that ϵ is added to a valid forwarding reward
to prevent it from being zero:

vik =

{
−∞, if vik is N/A,

vik + ϵ, otherwise,
(2)

where ϵ ∈ R+ is set to 1 in this work, while it can be any
strongly positive number. The goal of the proposed MSM (or
VMK) problem is to optimally place/forward missed requests
in a way that the total forwarding reward is maximized.

Using the given item (missed request) and knapsack (ES)
information in Fig. 3b and the above definitions, an item-
knapsack bipartite graph is formed as shown in Fig. 4. In the
figure, item (missed request) i1 has the collectable relationship
with knapsacks (ES) k1, k2 and k3. As it can be seen in Fig. 3b,
the corresponding ESs (m2,m5,m6) of the three knapsacks
contain the service image of the associated service type (y1) of
i1. Therefore, i1 has three edges to k1, k2, and k3, respectively.
The computed edge weights (forwarding rewards) are given in
Fig. 5 using the parameter values extracted from the example
MEC system in Fig. 2. In Fig. 5, we arbitrarily set w1 = 0.9
and w2 = 0.1 to make the priority (QoS) more important than
the transmission cost.

3) ILP Formulation of the MSM Problem: Next step is to
convert the VMK formulation of the MSM problem into an
equivalent ILP problem to obtain the optimal solution by using
a computer solver [15], [16]. The ILP model of a classical
(single) knapsack problem has been studied in [12]–[16].
Unlike the single knapsack problem, the VMK problem has
the following three distinct points: multiple knapsacks, one or
more instances exits per each item, and placement constraints.
Thus, we extend the ILP model of a single knapsack problem
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Service type 1 2 3

Priority 1 2 3

Min. priority 1

Max. priority 3

ES m1 m2 m3 m4 m5 m6

m1 0 5 4 4 5 3

m2 5 0 3 3 4 4

m3 4 3 0 4 3 3

m4 4 3 4 0 5 4

m5 5 4 3 5 0 4

m6 3 4 3 4 4 0

Min. cost 3

Max. cost 5

Service priority

Transmission costs (hop count)

(a) The assumed priority and transmission cost values.
Edge server ID

/ Missed Req.

        ID

k1(m2) k2(m5) k3(m6) k4(m3) k5(m4) k6(m1)

i1 0 0 0.1 N/A N/A N/A

i2 0.1 0.1 0.1 N/A N/A N/A

i3 0.1 0 0.05 N/A N/A N/A

i4 0.45 0.45 N/A 0.5 0.5 N/A

i5 0.5 0.5 N/A 0.55 0.5 N/A

i6 N/A N/A N/A 1 N/A 0.9

i7 N/A N/A N/A 0.95 N/A 0.95

i8 N/A N/A N/A 1 N/A 0.9

i9 N/A N/A N/A 1 N/A 1

(b) The resulting forwarding rewards, where ϵ = 0 to show the
raw values.

Fig. 5: The forwarding reward calculation for the missed
request forwarding problem derived from the item-knapsack
bipartite graph.

for it to be applicable to solving the VMK problem as follows
(called P. 3).

max
x

∑
∀i∈I

∑
∀k∈K

xik × vik (3a)

subject to :

∀k ∈ K :
∑
i∈I

xik × ri ≤ πk, (3b)

∀i ∈ I :
∑
k∈K

xik ≤ si, (3c)

∀i ∈ I, ∀k ∈ K : xik ≥ 0, and integer. (3d)

The objective Eq. 3a is to maximize the total forwarding
reward of all missed request instances that are scheduled to
be forwarded. Each missed request may have one or more
instances, and the decision variable x ∈ Z|I|×|K| determines
the number of instances of missed request i to forward to
serving ES k by xik. It takes a value from 0 to the total
instance count si of missed request i (see Eq. 3d). The vik is
the corresponding forwarding reward as defined in Eq. 1. The
Eq. 3b and Eq. 3c are the missed request and ES constraints.
For each missed request i, the number of the forwarded
instances cannot be larger than its total instance count si. It is
allowed that instances of a missed request can be forwarded
to different serving ESs. The ES’s resource budget constraint
(Eq. 3b) prevents the overflow (or over-packing in VMK)
situation, and the total amount of the missed request instances
to be forwarded to serving ES k cannot exceed the ES’s
capacity πk. The ri is the number of resource units required
to process an instance of missed request i.

Decision 

variable
VMK solu�on ILP solu�on 

xik Item Knapsack
Number of 

instances placed

Missing 

ES

Serving 

ES

No. of processed 

requests

x12=2 1 2 2 m1 m5 2

x13=1 1 3 1 m1 m6 1

x22=4 2 2 4 m3 m5 4

x31=4 3 1 4 m4 m2 4

x45=3 4 5 3 m1 m4 3

x55=1 5 5 1 m6 m4 1

x64=1 6 4 1 m2 m3 1

x76=1 7 6 1 m4 m1 1

x84=5 8 4 5 m5 m3 5

x96=2 9 6 2 m6 m1 2

Fig. 6: The optimal forwarding decision of the missed requests
derived from the VMK solution, where the decision variables
that are zero are omitted.

The proposed problem formulation does not explicitly ex-
press the service type constraints, i.e., a missed request of
a particular service type can only be processed at the cor-
responding serving ES. However, the constraint is in active
and hidden in the forwarding reward, vik. If ES k is not the
serving ES of missed request i, vik takes a value of −∞ by
Eq. 2. The optimization problem is formulated to maximize the
objective function, and thus, such xiks will never be selected.
In general, the resources related to MEC are multi-dimensional
as stated in [26]. For example, a task offloaded to an ES
may require CPU, memory, storage, networking, and/or power
resources at the ES. However, the proposed ILP is formulated
only with a single ES resource constraint, Eq. 3b. Although the
constraint will be taken as a CPU cycle limit in Section IV, it is
a generalized representation of a resource constraint, and one
can easily extend the proposed ILP to the multi-dimensional
resource problem by adding constraints similarly formed as
Eq. 3b.

With the ILP model P. 3, the optimal solution to the bipartite
item-knapsack graph in Fig. 4 derived from the sample MEC
network in Fig. 2 with the forwarding rewards in Fig. 5b is
given in Fig. 6. Note that by interpreting item and knapsack
as missed requests and ES, respectively, the optimal solution
can be used for knapsack packing and request forwarding
interchangeably. The Fig. 6 shows how the VMK solution
from the ILP model is converted to the optimal missed request
forwarding decision. For example, x12 = 2 is an action of
putting item i = 1 (i1) into knapsack k = 2 (k2). By
inspecting the collected information at ESM, it is found that
item i = 1 (i1) corresponds to missed request i1 which was
buffered at ES m1 with three instances of size 1 and service
type y1. Similarly, knapsack k = 2 (k2) is the ES m5 with
installed y1 and y2 services and with 7 resources available.
As a result, from the request forwarding perspective, X12 = 2
is a forwarding schedule of missed request i1 for 2 instances
from missing ES m1 to serving ES m5.

4) De-centralization by Lagrangian Relaxation and Decom-
position: Unfortunately, the proposed ILP in P. 3 is intractable
in general, and the complexity sharply increases with the
network size and the number of the missed requests. To reduce
the CPU time and to make the solution available in real-
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time, we propose to decompose the original ILP P. 3 into
low-complex subproblems by using Lagrangian relaxation and
Decomposition Theory. The final outcome of this section is a
general distributed request forwarding scheduling method that
can run in parallel and can be applicable to a range of similar
problems with little modification.

The first step is to decompose P. 3 into low-complex per-
ES problems that can be solved in parallel. Then, it will be
grouped into a fewer per-ESM problems for efficient data
gathering and forwarding optimization. However, one cannot
decompose P. 3 into per-ES/knapsack subproblems as it is due
to the coupling constraint in Eq. 3c. By relaxing the constraint,
one can form the Lagrangian as follows.

max
x

∑
i

∑
k

xik × vik −
∑
i

λi(
∑
k

xik − si) (4a)

subject to : Eq. 3b and 3d
∀i : λi ≥ 0, (4b)

where λ ∈ R
|I|
+ . By rearranging Eq. 4a, one can get:

L(x;λ) =
∑
k

∑
i

(vik − λi)xik +
∑
i

λisi. (5a)

Also, let

Lk(xk;λ) =
∑
i

(vik − λi)xik, (6)

where xk ∈ Z|I|. As it can be seen in Eq. 6, for each ES
k, λi is subtracted from vik, and it can be interpreted as the
price (or cost) for handling item i. The value of λi will be
iteratively updated as shown below, by which the distributed
solution can yield an effective sub-optimal solution.

The coupling constraint has been relaxed, and thus, the
entire problem in P. 4 can be decomposed into two-level
problems: one master problem (i.e., higher-level problem) and
|K| subproblems (i.e., lower-level problems), where K is the
set of ESs. At the lower level, each knapsack k solves the
following ILP for the given λ (called P. 7).

x∗
k(λ) = argmax

xk

Lk(xk;λ) (7a)

subject to :
∑
i

xik × ri ≤ πk (7b)

∀i : xik ≥ 0, integer. (7c)

Then, the master dual problem solves the following problem
(called P. 8):

min
λ

g(λ) =
∑
k

gk(λ) +
∑
i

λisi (8a)

subject to: λi ≥ 0,∀i, (8b)

where gk(λ) = Lk(x
∗
k, λ).

The lower problem P. 7 is a traditional single-knapsack
problem, and the well-known dynamic programming approach
can efficiently find the optimal solution in O(S × T ) where
S is the number of elements and T is the capacity of the

knapsack. The master problem can be efficiently solved with
a subgradient method with the following update rule for λ.

λt+1
i = [λt

i − αt(si −
∑
k

x∗
ik(λ

t))]+, (9)

where t is the iteration counter, α is the step-size, and [·]+ =
max(0, ·). Although there are various ways to update the step-
size α such as αt = 1+m

t+m for m ∈ R+ [18], the following rule
that has proven to be effective in practice [27] is used in this
work.

αt = βt(g(λt)− f∗)/
∑
i

||ei||2, (10)

where βt ∈ (0, 2], f∗ is the best known objective value of
the original problem, and ei = si −

∑
k x

∗
ik(λ

t). In general,
βt is set to 2 at the beginning, and then divided by two if
g(λt) does not change for several iterations. The study on the
convergence with the update rule Eq. 10 is given in [28].

The formulations P. 7 and P. 8 represent the fully distributed
(referred to as FD) approach since every ES on the network
computes its own solution. However, this is not a desirable
approach for the following two reasons. First, FD incurs heavy
message exchanges for updating λ. Second, FD is equivalent
to local greedy algorithm, and it is likely to yield either
impossible (e.g., trying to forward more items than there really
are) or inefficient solution for not considering other ESs when
computing the solution.

As aforementioned, there are ESMs on the assumed net-
work, and we propose to partition the problems in a way that
each ESM solve a subset of the entire problem in a distributed,
parallel manner. In other words, after clustering ESs into
multiple groups, and each ESM (i.e., the corresponding cluster
head) makes forwarding decision. Let H be the index set of
the ESM on the network with h ∈ H and |H| ≤ |K|, where
|K| is the number of ESs on the network. Let η(h) be the
index set of ESs that are under control of the ESM h. To
reformulate the FD into the per-ESM problems, let us rewrite
the Eq. 6 as follows.

Lη(h)(xk∈η(h);λ) =
∑

k∈η(h)

∑
i

(vik − λi)xik. (11)

Likewise, both P. 7 and P. 8 are rewritten such that a group
of per-ES problems are combined into one, resulting in |H|
number of lower problems instead. Note that the Lagrangian
relaxation-based approach (called LR hereafter) results in sub-
optimal solutions, although there are some cases where the
optimality gap is zero as discussed in Section IV-B.

D. Manager Selection

As aforementioned in Defn. 4, the ESM is in charge of
collecting both the missed request and ES state information
from the set of ESs under its control. ESMs can be arbitrarily
chosen, but we propose to choose such ESs that the mean
transmission delay from the chosen ES to the rest ESs are
minimized. The |H| is the number of ESMs determined by
the MNO and |K| is the number of ESs with |H| ≤ |K|.
Once ESMs are chosen, the set of ESs to be under control
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of an ESM is determined by the shortest transmission delay
between ES and ESM.

Let D = [dij ] be the one-hop transmission delay matrix
between adjacent ESs, where the delay between the two
adjacent ES i and j is denoted by dij . By using the Dijkstra’s
shortest path algorithm, the matrix C = [cij ] representing the
delay of the shortest path from source ES i to destination ES
j can be computed. The i-th row, ci∗, represents the delays
from ES i to the rest ESs on the network with cii being 0. The
mean delay from ES i to the rest is ci :=

∑
j cij/(|K| − 1).

Finally, the proposed method chooses 1-st, 2-nd, · · · , |H|-
th smallest values among ci,∀i, and the corresponding ESs
become the ESMs. Note that if the number of managers is
one, LR becomes the Lagrange dual of ILP, called LR(c) or
centralized LR. On the other hand, if there are more than
one managers, it is called LR(d) or distributed LR. In the
evaluation, we assumed that the ESM with the smallest index
takes charge of the master dual problem, i.e., updating λ. If
there is only a single ESM, it will take care of both lower and
master problems.

IV. EVALUATION

To evaluate the performance of the proposed method, we
have implemented the simulation environment and the pro-
posed methods with Matlab [29], CVX [30], and MOSEK
[31]. The Matlab is used to construct and emulate the network
and to generate service requests from users. CVX is used for
modelling/formulating the proposed optimization problems,
and the MOSEK solver computes the optimal solutions. Note
that MOSEK solves various optimization problems including
mixed integer programs. A high-performance workstation with
Intel(R) Core(TM) i9-10940X CPU and 128GB RAM is used for
simulation and performance evaluation.

A. Configurations

We assume an R-by-R grid network consisting of R × R
BS routers regularly located at the intersections [24]. Each
link connecting two adjacent routers has a unitless random
delay of Uniform[1, 2]. To be specific, a link delay is a sum
of 1 and Uniform[0, 1]. The former captures the relatively
stable nature of both propagation and transmission delays.
As stated in [4], the delay can be configured based on the
physical distance. On the other hand, the latter accounts for the
randomness in queueing and processing delays at the router.
Due to the evenly-spaced configuration of routers as well
as the complicated dynamics in channel condition, network
congestion and processing load, such delay modelling can be
a reasonable approximation of the delays for the assumed
system (see [4] for the detailed modeling of transmission
delays). The number of ESs |K| and their locations on
the grid are randomly chosen. If an ES is located at the
location of a particular router, both are co-located and the
in-between delay is assumed to be zero. The list of services
types {1, 2, · · · , Qtype} to be supported in the network are
known to all ESs and the users, and a randomly chosen set
of service executions images is installed on each ES. Each
randomly placed user [10] is associated with the closest BS/ES

[21], and sends a random number of requests associated with
randomly chosen service types. The arrivals of user requests
follow Poisson distribution [25], Poi(Uniform[0, Qrate]). For
the users under the coverage of the BS without equipping
an ES, their requests are forwarded to the closest ES. The
priority of each service type (QoS) is randomly chosen in
{1, 2, · · · , Qpri}. Throughout this section, Qpri is set to 3
to reflect the classification of priority into low, medium, and
high defined in [32].

The instance size (i.e,. the number of resource block re-
quired to process an instance) of a request of each service
type is randomly chosen in {1, 2, · · · , Qsz}. The available
capacity of each ES is randomly chosen in {1, 2, · · · , Qcapa}.
As aforementioned in Section III-C3, the resource budget
constraint Eq. 3b is a generalized representation, and it can
be easily extended to multiple budget constraints if multi-
dimensional resources are considered. In this section, we
assume processing-centric MEC environment where user re-
quests and the corresponding responses are negligibly small
in bit length. Thus, available capacities and required resources
in this section indicate the CPU cycles available at ESs and
the required CPU cycles to process each instance of missed
request, respectively. CPU budgets are discretized into equal-
sized blocks, and thus, they can be represented by integers.

In what follows, each subsection considers different network
layouts, and the configuration values to be used for each
layout therein will be specified at the beginning of each
subsection. Note that the most configurations and parameters
defined above are reflecting the physical characteristics [4],
widely used values [10], [24], [25], or borrowed from related
standards [32]. The others are randomly selected assuming
general use cases.

There are nine approaches that are implemented and com-
pared with each other as below. ILP(c) and LR(c,d), are
the proposed ones, whereas the rest are for performance
comparison. Among the proposed approaches, we propose to
use LR(d) for its low-complexity and a small optimality gap.
Note that (c) and (d) refers to centralized and distributed, re-
spectively. Centralized is the case when there is a single entity
with the global information makes a global decision, whereas
the distributed is the case when a small number of entities
with limited information make local decisions concurrently
and individually. Obviously, the centralized approaches will
yield better solutions compared to the distributed counterparts.
However, the centralized ILP(c), LR(c) and LRRS(c) solve
an optimization problem, and their computation complexity
can be high as the network size increases. Also, centralized
approaches require the global knowledge, which may incur
heavy and frequent data exchange. On the other hand, LR(d)
solves partitions of the problem in parallel by ESMs. The
reduced problem size as well as the parallelism helps reduce
the computation time. After each iteration, LR(d) exchanges
both optimal solutions of sub-problems and λ, but their size
is small.

1. ILP(c): The proposed centralized optimal method using
integer programming.

2. LR(c), LR(d): The proposed sub-optimal solutions us-
ing the Lagrangian relaxation and problem decomposi-
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Fig. 7: A 4-by-4 small-scale network layout with four ESs.

tion. The dual variables λ are randomly initialized by
Uniform[0, 1] at the beginning. Note that LR iteratively
updates the dual variables, and it is configured to run for
a limited number of iterations.

3. RND(c), RND(d): Random approaches that assigns each
missed request to a randomly chosen ES if it can process.

4. GRD(c), GRD(d): Greedy approaches that processes the
missed request yielding the highest forwarding reward
first.

5. LRRS(c): The request forwarding approach proposed in
[11]. The authors proposed integer programming based
request scheduling method, which is followed by linear
relaxation and rounding for complexity reduction. Their
objective is to maximizes the number of processed re-
quests by forwarding.

6. LRRS(c)-v: A modified version of LRRS(c) for fair com-
parison. Instead of maximizing the request forwarding,
LRRS(c)-v is modified to maximizes the total forwarding
reward as ILP(c) and LR(c,d) do.

The weights are set to w1 = 0.5, w2 = 0.5 for ILP(c),
LR(c,d), GRD(c,d), LRRS(c)-v to keep a balance between
priority and transmission cost, while RND(c,d) and LRRS(c)
has nothing to do with the weights during operation. However,
when comparing the total forwarding reward, the same weight
will be assumed for RND(c,d) and LRRS(c). In what follows,
each subsection assumes a particular network layout with a
particular set and placement of ESs. Then, the evaluation
is carried out for 10 times with 10 different scenarios, i.e.,
10 different request arrivals from users. Although each sub-
section assumes a particular network deployment, due to the
randomness in ES deployment, user deployment and request
arrivals, the results therein can be taken as representative
across similar network sizes based on our experience.

B. Sub-Optimality Analysis on a Small-Scale Network

We first begin with a small-sized network as in Fig. 7 to
study the sub-optimality of LR(c,d) compared to ILP. On the
network, there are four ESs labeled 2, 6, 15 and 16. Although
these are the IDs of routers to which each ES is directly
attached, they also will be used as ES IDs and corresponding
ES IDs for convenience. For LR(d), it is configured that all
ES are managers. Although this is an extreme, fully-distributed
case, due to the small number of ESs existing on the network,
the optimality gap does not increase much as shown below.

TABLE III: The missed request versus ES forwarding reward
matrix V and the number of instances of each missed request
received at the missing ES for the first scenario.

V no. of instances to schedule
−∞ −∞ −∞ 1.4500 2
−∞ 1.9923 1.9182 −∞ 3

1.0923 −∞ 1.0460 1.0279 1
−∞ −∞ 1.9460 −∞ 1
−∞ −∞ −∞ 1.4779 5
−∞ 1.0460 −∞ −∞ 2
−∞ −∞ −∞ 1.55 5
−∞ −∞ 2.0000 −∞ 3
−∞ 1.9279 2.0000 −∞ 3

TABLE IV: Optimal solution of both ILP(c) and LR(c,d) for
the first scenario, where each row and column indicate missed
request and serving ES, respectively, and the entries with the
value of 0 are left empty.

3
1

1
4

5
3

2 1

Also, Qtype, Qrate, Qpri, Qsz , and Qcapa is configured to 5,
3, 3, 3, 15, respectively.

Consider the forwarding reward matrix V ∈ R|I|×|K| in Ta-
ble III, where nine rows and four columns indicate nine missed
requests and four ESs (i.e., ES 2, 6, 15 and 16 corresponding
to the column indices 1, 2, 3, 4, respectively), respectively.
For example, V (1, 4) is the forwarding reward when missed
request 1 is forwarded to ES 16 to process. On other hand,
missed request 2 cannot be forwarded to ES 2, resulting in −∞
in V since the corresponding service image is not installed on
the ES. Due to the simplicity of the problem, both ILP(c) and
LR(c,d) took a trivial amount of time to compute the optimal
solution. In this particular problem setting, ILP(c) and LR(c,d)
result in the same objective value of 34.53 and the same
optimal decisions as shown in Table IV. From the number
of instances to schedule in Table III and the optimal decision
in Table IV, it can be seen that the Lagrangian relaxation
based methods do not violate the constraints (Eq. 3c) by not
allocating any extra (i.e., non-existing) instances. In addition,
some request instances are not to be forwarded to other ESs.
For example, none of the the missed requests at the first and
sixth rows in Table III is forwarded, whereas for the missed
requests at the fifth row, only four instances out of five are
re-directed to other serving ES. Under the practical scenarios
where ESs are resource-limited, such selective no-forwarding
(or partial-forwarding) decisions are unavoidable especially
when the available resources at ESs are not sufficient to
process the entire missed request instances.

In particular, LR(c,d) is a sub-optimal solution and thus, its
solution is not as good as ILP(c) in general. However, in this
particular scenario, the optimality gap was zero. The reason is
that the majority of the high-rewarding missed requests did not



IEEE TRANSACTIONS ON XXX, VOL. XX, NO. XX, AUGUST 20XX 11

2

7 8 10

14

16 18

22 24

Fig. 8: A 5-by-5 small-scale network layout with nine ESs.

overlap among ESs. For example, for the ES 16 corresponding
to the fourth column in V , the most high-rewarding missed
request is the one at the 7th-row in V , which is not the case
to the rest ESs. Thus, it decided to process all instances of it.
The second high-rewarding missed request is the one at the
5th-row in V , which is also not the case to the rest ESs. Thus,
it decided to process it as much as it can.

On the other hand, the case for ES 6 and 15 corresponding
to the second and third column in V , respectively, is quite
complicated. For ES 6, the most high-rewarding missed re-
quest is the one at the second row in V and thus, it decided
to process all instances of it. For the remaining capacities, it
decided to process the last missed request as much as it can,
resulting in taking two instance of it. However, the last missed
request is one of two most valuable missed request to ES 15;
the last two missed requests have the same forwarding reward
of 2 which is the highest among all for ES 15. Thanks to the
λ update, however, the last missed request is penalized more
than the second to the last missed request. Thus, to ES 15, the
second to the last missed request has become the most high-
rewarding. In this way, by updating λ, the most high-rewarding
missed request to one ES has become less valuable to the rest
ESs. Thus, each ES’s individual decision making process also
resulted in the global optimal solution that is equivalent to that
of ILP(c).

In general, however, LR-based approaches result in sub-
optimal solutions compared to ILP(c). We have carried out
simulations on 10 different request arrival scenarios on the
same network configuration, and the mean optimality gap
of LR(d) was 0.86 with standard deviation of 0.80, which
amounts to 3.31% of the mean optimal objective value of ILP.
However, the optimality gap between LR(c) and ILP(c) was
close to zero for all scenarios considered.

C. Performance Comparison on Small-Scale Networks

In this section, both the network size and the number of
ES are slightly increased as shown in Fig. 8. The number of
ESMs are set to three (ES 7, 8 and 18) by the rule mentioned in
Section III-D. The other network parameters remain the same
as above, and the iteration limit for LR(c,d) is 10. The objective
values computed for the ten different different scenarios (i.e.,
different request arrivals) are depicted in Fig. 9.

Excluding ILP(c), the LR-based approaches outperformed
the rest, and LR(c) yielded the optimal solution. The optimality
gap of LR(d) was on average 0.68, which is only 1.74%
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Fig. 9: Comparison of the objective values on the small-scale
network scenarios.

lower than ILP(c). Such a small performance degradation
proves the effectiveness of the proposed LR(d). Besides, in
the considered scenarios, GRD(c) has shown only a small
amount of performance degradation compared to the optimal
solution on average. However, in some scenarios, such as
Scenario #10, the difference was large. The rest methods,
GRD(d) and RND(c,d), recorded a large amount of performance
degradation, indicating their inadequacy as a solution to MSM.

From the viewpoint of the total forwarding reward max-
imization, LRRS(c) performs worse than the proposed ones
since it is designed to maximize the number of request
forwarding with no consideration of QoS or forwarding delay
(i.e., forwarding reward). For a fair comparison, LRRS(c)-v
is used after a minor modification to LRRS(c). LRRS(c)-v
outperforms the heuristic algorithms, but the mean perfor-
mance is strictly lower than LR(c) and comparable to LR(d).
Note that LRRS(c)-v is a centralized approach, meaning that
although both LRRS(c)-v and LR(d) have recorded a similar
performance to each other, LR(d) has advantages such as low
computational complexity and reduced information exchange
which are not evident in Fig. 9.

Let Distribution Price (DP) be the difference in the mean
objective values between a centralized approach and its dis-
tributed counterpart, and it quantifies the performance loss due
to being distributed for a method. Obviously, the centralized
approach always outperforms for having the global knowledge
while incurring heavy message exchange and large computa-
tion complexity. The DP for LR is only 0.68 (1.74%), whereas
that for GRD and RND were relatively large, i.e., 4.81 (13.06%)
and 4.57 (13.83%), respectively. This shows that despite of
the absence of the global information, the proposed LR(d) can
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TABLE V: Performance comparison for the small-sized net-
work averaged over 10 scenarios.

Algo. Priority Delay Fwd. MRs
ILP(c) 36.50 3.05 23.80
LR(d) 36.00 3.10 23.40
LR(c) 36.50 3.05 23.80
RND(d) 27.50 4.44 18.80
RND(c) 32.60 4.56 21.60
GRD(d) 31.60 3.83 19.60
GRD(c) 34.70 3.00 22.20
LRRS(c) 34.40 4.55 22.20
LRRS(c)-v 35.50 2.95 23.10

achieve similar performance to LR(c). However, the limited
local view restrains the performance improvement for RND
and GRD much.

Table V summarizes the performance with respect to the
following criteria:

• Priority: Sum of the priority values of the processed/
forwarded missed requests averaged over 10 scenarios.

• Delay: Mean delay of forwarding a chosen missed request
averaged over 10 scenarios.

• Fwd. MRs (Forwarded Missed Request): Total count of
the missed requests that are chosen to be forwarded
averaged over 10 scenarios.

The larger values are the better for both Priority and Fwd.
MRs, while the lesser is the better for Delay.

Both ILP(c) and LR(c) show the identical and optimal
performance in all criteria, which proves that combining
with the results shown in Fig. 9 the two approaches have
resulted in the identical forwarding decision. The optimality
gap of LR(d) we have seen in Fig. 9 becomes clear by the
table Table V in that LR(d) is slightly outperformed by both
ILP(c) and LR(c) in all three criteria. LRRS(c) is much
outperformed by the proposed approaches since it focuses
only on maximizing the number of missed request forward-
ing. On the other hand, the modified LRRS(c)-v has shown
similar performance to the proposed approaches in all three
criteria. Although LRRS(c)-v has achieved the shortest delay,
it is because of the smaller number of forwarded requests
compared to the proposed approaches, resulting in a slightly
lower performance. The reason for the lower performance is
due to the rounding and sequential algorithm used in LRRS.
LRRS solves the linear-relaxed optimization problem, and
them applies rounding operations. Then, determines the actual
number of requests to forward by visiting each entry in the
decision one by one. The rounding operation can be harmful
especially when there are multiple forwarding candidates with
the same reward. Also, the sequential operation may cause
performance degradation when the order of visiting matters.
GRD(c) has yielded a short delay as well, but its improvement
compared to ILP(c) and LR(c,d) is not significant. Also, in all
other criteria, GRD(c) is outperformed by ILP(c) and LR(c,d).
The randomized approaches, RND(c) and RND(d), recorded the
lowest performance in all criteria among the centralized and
distributed algorithms, respectively.

Due to the problem simplicity, all considered algorithms
took a negligibly small amount of time to solve. A close look
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Fig. 10: A 10-by-10 large-scale network layout with 28 ESs.
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Fig. 11: Comparison of the objective values on the large-scale
network scenarios

at CPU time and convergence will be studied in the following
subsection for a larger network layout with more ESs.

D. Performance Comparison on Large-Scale Networks

A larger network of a 10-by-by grid is considered in this
section with 28 randomly generated ESs as shown in Fig. 10.
The number of ESMs are 3, i.e., ES 55, 56 and 64. The
iteration limit for LR(c) remains to be 10 as before, while that
for LR(d) is tripled (i.e., 30). Such limits are found by repeated
empirical studies, and they can vary with the problem size.
Qtype is doubled (i.e., 10), while the rest parameters remain
the same as before. The objective values computed across 10
different scenarios are shown in Fig. 11.

Similar to the case of the small-scale network, LR(c,d) out-
performs the rest, except ILP(c). Although LR(c) has yielded a
sub-optimal solution this time, the optimality gap is trivial (i.e.,
0.29%). On the other hand, the sub-optimality of LR(d) has
become noticeable, and the degradation in the objective value
is observed in all of the considered scenarios. The LR(d) lets
each ESM solve a partition of the entire problem with limited
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TABLE VI: Performance comparison for the large-sized net-
work averaged over 10 scenarios.

Algo. Priority Delay Fwd. MRs
ILP(c) 310.50 4.65 174.90
LR(d) 290.40 4.32 169.10
LR(c) 310.20 4.75 174.60
RND(d) 218.00 9.06 121.50
RND(c) 253.30 8.86 148.40
GRD(d) 237.60 4.37 101.60
GRD(c) 284.40 4.13 127.20
LRRS(c) 282.20 9.17 168.90
LRRS(c)-v 298.40 4.76 168.70

information. Thus, it can happen that some ESs are under-
/over-utilized. The increased problem size can aggravate such
inefficiency in solution, but the performance degradation from
such cases is not significant. LRRS(c) is much outperformed
by the proposed methods and LRRS(c)-v for having a different
objective. On the other hand, LRRS(c)-v has resulted in a
lower performance than ILP(c) and LR(c) and a slightly lower
objective value than LR(d). Although the performance gap
between LRRS(c)-v and LR(d) is insignificant, considering the
advantages of being distributed, LR(d) is more applicable for
practical use. An interesting finding is that unlike the previous
small-scale network cases, the objective values of GRD(c,d)
have become similar to that of RND(c,d). It implies that greedy
approaches become inefficient as the network size increases.

The DP for LR is 3.47%, while that for GRD and RND
was 23.75% and 17.19%, respectively. In all of the consid-
ered approaches, DP has increased compared to the small-
scale network cases, meaning that the absence of the global
information has degraded the performance of the distributed
approaches much larger. Table VI summarizes the performance
of the considered algorithms with respect to total priority,
per-missed request forwarding delay, and the number of for-
warded missed requests. As it has been observed in Fig. 11,
LR(c) has yielded a sub-optimal solution, and thus, for both
priority and forwarded missed requests, ILP(c) outperforms
LR(c). Although LR(d) has shown an enhancement in delay
compared to ILP(c), it cannot be solely taken to evaluate
the effectiveness of the solution. Although LRRS(c) focuses
only on forwarding as many missed requests as possible at
the expense of delay, it is outperformed by the proposed
approaches in that particular metric. LRRS(c)-v, on the other
hand, has achieved better performance than LRRS(c). The
different characteristics between GRD and RND have become
clearer in the large-scale network with more missed requests.
The GRD tends to assign high-rewarding missed requests first,
and thus, it resulted in assigning a smaller number of missed
requests with high priority and low delay. On the other hand,
RND randomly and exhaustively assigns missed requests. As a
result, the delay has become larger, and it has yielded a smaller
the total priority while forwarding more missed requests.

The Table VII shows the CPU time to solve the considered
problems. As expected, ILP(c) recorded the highest CPU
time to solve the optimization problem. The average value
is 35.33 seconds, and thus, it cannot be used for online
processing. Also, the runtime depends largely on the problem
size yielding a large standard deviation, which was not the

TABLE VII: Mean CPU time (the value of zero indicates that
the measured time is negligibly small).

Time (seconds)
Algo. Mean Std. dev.
ILP(c) 35.33 90.57
LR(d) 0.01 0.00
LR(c) 0.08 0.00
RND(d) 0.00 0.00
RND(c) 0.01 0.00
GRD(d) 0.00 0.00
GRD(c) 0.02 0.00
LRRS(c) 0.16 0.01
LRRS(c)-v 0.16 0.01

case to the rest approaches. The two LRRS approaches
have recorded 0.16 seconds of CPU time to compute the
optimal solutions. Although the runtime is larger than that
of the proposed Lagrangian-based methods, LRRS can still be
used as an online scheduling method in some applications.
As the network size increases, however, the complexity of
the centralized LRRS methods also increases, resulting in
the increased CPU time. In addition, LRRS has one-by-one
iterative procedures which consumes much time especially
when there are a large number of ESs and missed requests.
On the other hand, both GRD and RND which simply iterate
over all missed request-ES pairs have terminated quickly in all
scenarios. The LR(c,d) approaches can also find solution in a
short amount of time, suggesting the possibility of utilizing
them as online algorithms. In addition, each ESM in LR(d)
collects only a part of the information, and takes a smaller
amount of time to return the solution due to the reduced
problem size.

E. Complexity and Convergence

Both RND and GRD are iterative, polynomial algorithm
whose complexity is proportional to O(|I| × |K|) RND(c)
and GRD(c), where as that of distributed ones are smaller due
to the reduce problem space. LRRS(c) and LRRS(c)-v are
linear programming, and both have the identical complexity.
Assuming the interior point method as a solution method,
typical linear programmings have the complexity O(n3.5L),
where n = dim(X) = |I| × |K|, and L is the length of the
binary-coded input data [33], [34]. The proposed LR solutions
consist of a master problem and multiple lower problems.
The master problem can be solved by a simple calculation
in polynomial time as stated in Eq. 9. Assuming ESs are
clustered and each ESM solves the forwarding schedules for
multiple ESs, the lower problem P. 7 is the reduced NP-
hard [6] assignment problem, whereas the ILP(c) in P. 3 is
the full-sized, complete ILP problem. As aforementioned in
Section III-C4, (multiple) knapsack problems can be efficiently
solved in quasi-polynomial (pseudo-polynomial) time [35], but
we have solved optimization problems with integer variables
with MOSEK solver which uses relaxation, branch-and-bound,
and cutting plane approaches. As a result, the complexity of
each problem instance is reduced to that of interior method for
linear programs, and the search space for LR(d) is significantly
diminished for clustering.
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Fig. 12: Convergence of the primal objective values for the
large-scale network scenarios.

Besides, it is important for iterative LR-based approaches to
assure the convergence. The Fig. 12 shows the convergence
behaviour of LR(c,d) for the large-scale network introduced in
Section IV-D. As it can be seen in Fig. 12a, LR(c) converges
much faster than its distributed counterpart for having the
global knowledge. On average, the convergence was reached
within the first five runs of iteration. On the other hand, LR(d)
took longer to converge as shown in Fig. 12b for lacking
information and knowledge disparity, and this is clearly a
disadvantage of the distributed approach compared to its
centralized counterpart. However, the convergence behaviour
of LR(d) can be further enhanced by different step-size update
rules, different initialization policies for λ and xik.

V. CONCLUSION

In this paper, we have studied the MEC service missing
problems which arise when an ES cannot provide service to
the received request from users. To effectively forward such
requests to the ESs that are installed with the corresponding
service images, we have formulated the request forwarding
problem by using the variant multiple-knapsack framework.
The resulting integer linear problem can yield an optimal
request forwarding schedules, but it may suffer from a high
computation complexity as the problem size increases. By
the evaluations on different network sizes and with different
request arrival scenarios, we have shown that the proposed
centralized and distributed Lagrange dual solutions can result
in high-rewarding solutions with small runtime. The central-
ized approach can yield near-optimal solution within only a
few iterations, but it requires the global knowledge for the
problem to be solved correctly. Considering the heavy message
exchanges required to gather the network-wide information,
the decomposed Lagrangian dual approach can be used at
the expense of the total reward. Also, it can further reduce
the computation time, making it more suitable for online
processing. A study on the convergence of both centralized
and distributed Lagrange dual approaches has been also carried
out. The centralized approach has converged within a small
number of iterations, while the distributed counterpart required
more iterations to converge.
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