IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 6, JUNE 2002

595

Coordinated En-Route Web Caching

Xueyan Tang and Samuel T. Chanson

Abstract—Web caching is an important technique for reducing Internet access latency, network traffic, and server load. This paper
investigates cache management strategies for the en-route web caching environment, where caches are associated with routing nodes
in the network. We propose a novel caching scheme that integrates both object placement and replacement policies and which makes
caching decisions on all candidate sites in a coordinated fashion. In our scheme, cache status information along the routing path of a
request is used in dynamically determining where to cache the requested object and what to replace if there is not enough space. The
object placement problem is formulated as an optimization problem and the optimal locations to cache the object are obtained using a
low-cost dynamic programming algorithm. Extensive simulation experiments have been performed to evaluate the proposed scheme in
terms of a wide range of performance metrics. The results show that the proposed scheme significantly outperforms existing
algorithms which consider either object placement or replacement at individual caches only.

Index Terms—Web caching, web cache management, web object placement, transparent web cache, dynamic programming,

performance evaluation, World Wide Web.

1 INTRODUCTION

HE explosive growth in popularity of the World Wide

Web is leading to a number of performance problems.
The Internet is becoming increasingly congested and
popular web sites are suffering from overload conditions
due to the large number of simultaneous accesses. As a
consequence, considerable latency is often experienced in
retrieving web objects from the Internet.

Caching web objects at various components in the
network (such as servers, proxies, and clients) is an
important approach for enhancing web content delivery
[1], [2], [3]. With caching, copies of popular objects are
stored closer to the users. This has the benefits of reducing
network traffic and alleviating server load, thereby decreas-
ing access latency. Web caching is different from traditional
memory caching supported by operating systems. Unlike
pages, web objects typically have different sizes and very
different access frequencies. Web requests to servers and
objects are found to exhibit a Zipf-like distribution [4]. In
addition, as web servers are geographically located all over
the Internet, the performance gain of caching an object
depends very much on the network distance from the
content server of the object. The issues of object sizes, access
frequencies, and distances from the servers in the object
replacement strategy of a single web cache have been
addressed in recent research [5], [6], [7], [8], [9], [10].

To obtain the full benefits of caching, multiple web
caches are often deployed which cooperate with each other
in serving client requests. Examples include hierarchical
caching and distributed caching [11], [12], [13]. Recent
advances on transparent web caches [14] have enabled the
development of a new caching architecture, called en-route

o The authors are with the Department of Computer Science, The Hong Kong
University of Science and Technology, Clear Water Bay, Hong Kong.
E-mail: {tangxy, chanson}@cs.ust.hk.

Manuscript received 25 Jan. 2001; revised 19 Dec. 2001; accepted 24 Jan.
2002.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 115746.

web caching [15], [16], [17]. In this approach, web caches are
associated with routing nodes in the network and are
referred to as en-route caches. An en-route cache intercepts
any client request that passes through the associated
routing node. If the requested object is in the cache, the
object is sent to the client and the request will not be
propagated further upstream. Otherwise, the routing node
forwards the request along the regular routing path toward
the content server. If no en-route cache is found to contain
the target object, the request is eventually serviced by the
content server. En-route web caching can be implemented
by a number of light-weight techniques such as extending
the standard TCP or HTTP protocol in existing IP networks
[18], [19] or using an active network where the routers can
manipulate the messages flowing through them and per-
form customized computations [20]. En-route web caching
has a number of advantages. First, it is transparent to both
content servers and clients. Second, since no request is
detoured off the regular routing path, the additional
bandwidth consumption and network delay for cache miss
are minimized. Moreover, it eliminates the extra overhead
of locating the objects such as sending broadcast queries
[21] and maintaining directories [22], [23]. Therefore, en-
route caching is easy to manage and has good system
scalability.

The performance of en-route web caching depends on
the locations of the caches and how the cache contents are
managed. While the first issue has been studied in recent
years [17], [24], the second issue has received little attention.
In this paper, we focus on the second issue and explore
effective content management techniques for en-route
web caches, including object placement and replacement
algorithms. Dynamically determining the appropriate
number of object copies and placing them in suitable
en-route caches are challenging tasks. When a new object
is placed in a cache, other objects may need to be
removed in order to create room. The interaction effect
between object placement and replacement in the set of
candidate caches further complicates the problem. Existing

0018-9340/02/$17.00 © 2002 |IEEE
Authorized licensed use limited to: FU JEN CATHOLIC UNIVERSITY. Downloaded on October 8, 2008 at 04:30 from IEEE Xplore. Restrictions apply.

596

caching schemes consider either object placement or
replacement at individual caches only and are not
optimal. In this paper, we propose a novel caching
scheme that incorporates both object placement and
replacement strategies. The scheme dynamically places
the object in the caches on the path from the server to the
client in a coordinated fashion. We formulate the object
placement problem as an optimization problem and obtain
the optimal locations for caching objects using a dynamic
programming algorithm. The effectiveness of the proposed
scheme has been tested by extensive simulation experi-
ments. The results show that our scheme significantly
outperforms existing schemes which consider either object
placement or replacement at individual caches only.

The rest of the paper is organized as follows: Section 2
summarizes related work. The proposed coordinated en-
route caching scheme is presented in Section 3. Section 4
describes the simulation model and the experimental
results are discussed in Section 5. Finally, Section 6
concludes the paper.

2 RELATED WORK

Cache collaboration is an important technique that im-
proves caching performance. Cooperation among caches
can be performed in two orthogonal dimensions: horizontal
and vertical. Horizontal cooperation is performed by caches
that are geographically clustered and have similar distances
to the content servers (e.g., [25], [26], [9]). Vertical
cooperation is performed by caches that are geographically
distributed and have different distances to the content
servers (e.g., [15], [27]). Vertical cooperation is more
commonly used in en-route caching because the caches
are often located throughout the global network instead of
being deployed within the user organization only. There-
fore, our work has focused on cooperation among caches in
the vertical dimension, i.e., the caches on the routing paths
of requests. Bhattacharjee et al. [15] studied the benefits of
associating caches with switching nodes throughout the
network. Their proposed caching schemes were simple, but
did not take object size, access frequency, and distance from
the server into account. Yu and McNair [27] discussed
collaboration between parent and child proxies for hier-
archical caching. However, there was no analytical model-
ing. Hierarchical caching can be viewed as a special case of
en-route caching in that the requests are only generated at
the leaf nodes of the hierarchy and are routed toward a
single root cache. Our model is general and is applicable to
hierarchical caching also.

Early work on single web cache management had
investigated simple extensions of traditional page replace-
ment algorithms such as LRU and LFU [28]. More recent
work has focused on cost-based cache replacement algo-
rithms [5], [29]. The idea is to design a cost function for
cache replacement policy that incorporates multiple factors
such as object size, access frequency, and retrieval cost from
the server. A typical example is the LNC-R algorithm
proposed by Scheuermann et al. [29]. They further proved
that the suggested function is optimal (i.e., maximizing
delay reduction for a single cache) in a simplified model [8].
However, the scheme automatically places a newly

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 6, JUNE 2002

nodes containing a
copy of object R

nodes not containing a
copy of object R

e / (\ . m(R) with respect to ¢
U/ P (0
J AN _/ k{\ i
N

v/l (\i)
Fig. 1. En-route caching.

referenced object in the cache without evaluating whether
it is beneficial to do so. This may result in ineffective use of
cache space when there are a large number of caches in the
network such as in en-route caching. The approach also
incurs high workload on the caches and, hence, has poor
system scalability. Aggarwal et al. [7] provided a Size-
Adjusted LRU scheme and used an admission control
policy to decide whether or not caching an object is
worthwhile. However, the authors did not further consider
cooperation among different caches.

The cache location problem (i.e.,, where to place the
caches in the network) for en-route caching was studied by
Krishnan et al. [17] and Li et al. [24]. This problem is
different from the one we are addressing in this paper,
namely, where to place web objects given the set of caches
and which objects should be replaced if necessary. In fact,
our work and theirs may be integrated in some situations.

3 COORDINATED EN-ROUTE CACHING

We model the network as a graph G = (V, E), where V is
the set of nodes (routers) in the network, each associated
with an en-route cache,! and F is the set of network links.
Every content server or client is attached to a node in V.
Clients issue requests for web objects maintained by content
servers. Each web object is served by exactly one server.
Usually, the client and the server of a request are not
located at the same site and there are a lot more clients than
servers. For each object O, a nonnegative cost c(u, v, O) is
associated with each link (u,v) € E. It represents the cost of
sending a request for object O and the associated response
over the link (u,v). If a request travels through multiple
network links before obtaining the target object, the access
cost of the request is simply the sum of the corresponding
costs on all these links. The term “cost” in our analysis is
used in a general sense. It can be interpreted as different
performance measures such as network latency, bandwidth
requirement, and processing cost at the cache, or a
combination of these measures.

As shown in Fig. 1, a request goes along a routing path
from the client (denoted by c) to the server (denoted by s).
For any pair of nodes v; and v; on the path, we say v, is ata

1. For simplicity, we assume that every node is associated with an en-
route cache. The following analysis can be easily extended to the case where
en-route caches are associated with certain subset of nodes by only
including the nodes with caches in the graph.

Authorized licensed use limited to: FU JEN CATHOLIC UNIVERSITY. Downloaded on October 8, 2008 at 04:30 from IEEE Xplore. Restrictions apply.

TANG AND CHANSON: COORDINATED EN-ROUTE WEB CACHING

Fig. 2. System model for coordinated en-route caching.

higher level than v; if v, is closer to s. In en-route caching,
the request is satisfied by the node at the lowest level
(denoted by w) containing the target object. Notice that w is
the same as s if the requested object is not in any cache
along the path between c and s. It is known that most web
objects are relatively static, i.e., the access frequency is much
higher than the update frequency [6], [30]. We shall assume
the objects stored in the caches are up-to-date (e.g., by using
a cache coherency protocol [31] if necessary). After the
request reaches w, the target object (denoted by R) is sent
along the same path back to the client. Routing paths from
all nodes to a given server are represented by a tree
topology [17], [24]. For simplicity, symmetric routing is
assumed in our analytical model. However, since this
assumption may not be valid in some situations [32], we
have also modified the proposed coordinated caching
scheme to handle routing asymmetry and studied its
performance by simulation experiments (see Section 5.3).

To reduce the cost of future accesses to object R, a copy
of R can be dynamically placed in some of the caches along
the path between w and c as R is being sent to the client. The
issues to be investigated include: 1) which nodes should R
be placed (object placement problem) and 2) which objects
should be removed from a cache if there is not enough free
space (object replacement problem).

3.1 Problem Formulation
The object placement problem is trivial if cache sizes are
infinite, in which case, objects can be stored in every cache
to minimize total access cost. However, due to limited cache
space, one or more objects may need to be removed from
the cache when a new object is inserted. Removing an object
increases its access cost (referred to as cost loss), while
inserting an object decreases its access cost (referred to as
cost saving). The object placement problem for en-route
caching is further complicated by caching dependencies, i.e., a
placement decision at one node in the network affects the
performance gain of caching the same object at other nodes.
The optimal locations to cache an object depend on the cost
losses and cost savings at all the nodes along the routing
path. Our objective is to minimize the total access cost of all
objects in the network.

We start by computing the cost saving and the cost loss
of caching an object at individual nodes. Consider a node v.
Let f(O) be the access frequency of object O observed by
node v, ie., the rate of requests passing through v and
targeting for O. Let m(O) be the miss penalty of object O with
respect to v. The miss penalty is defined as the additional

597

cost of accessing the object if it is not in the cache at v. In our
en-route caching model, m(O) is given by

>

(u1,up)ePATH (v')

m(0) =

C(u17u27 O)a

where v’ is the nearest higher level node of v that caches O
and PATH(v,v') is the set of network links on the path
between v and v’ (see Fig. 1).

Let R be the requested object. Clearly, the cost saving of
caching R at v is

f(R) - m(R).

Computing the cost loss of caching R at v is a bit more
complicated. Let O1,0,,...,0; be the objects currently
cached at v. The cost loss introduced by removing object O;
from the cache is

f(O;) - m(0;).

Obviously, the purged objects should introduce the least
total cost loss while creating enough space to accommodate
R. This is equivalent to the knapsack problem and is
NP-hard. The following greedy heuristic can be used to
select replacement candidates. Notice that the normalized
cost loss (NCL, i.e., the cost loss introduced by creating one
unit of free space) of purging O; is

f(O:) -m(0y)
9(07) ’

where s(0;) is the size of object O;. The objects in the cache
are ordered by their NCLs and are selected sequentially,
starting from the object with the smallest NCL, until
sufficient space is created for R. The cost loss of caching
R at v is calculated by summing the cost losses introduced
by all the selected objects.

We now formulate the object placement problem on
the path between w and c. Consider the snapshot when a
request for object R is being served (see Fig. 2). Let A; =
w be the content server or the high level node satisfying
the object request, A, = c be the client issuing the request,
and A, Ay,..., A, are the nodes on the routing path
from A, to A,.

Let m; represent the miss penalty of object R with respect
to 4;, then

i

m; = Z C(Aj,l, A]', R)

J=1

Authorized licensed use limited to: FU JEN CATHOLIC UNIVERSITY. Downloaded on October 8, 2008 at 04:30 from IEEE Xplore. Restrictions apply.

598

Let f; be the access frequency of object R at A;. Since
requests for R that go through A; must also pass through
A1, Aia, ..., A, we have f; > fo > ... > f,. Suppose R is
cached in r intermediate nodes A4,,, A,,, ..., Ay, where r > 0
and 1 <v <wv <...<wv <n. Taking into consideration
the caching dependencies of R along the path, the total cost
saving is given by

r

D (= foy) - 10),

=1
where f, ., is set to 0. Now, let /; be the cost loss of evicting
objects at node A; to create enough space for R, then the
total cost loss is

.
S
=1

Therefore, the reduction of total access cost in the network
is given by

r

Z((fm - f’vom) My, = ly,)- (1)
=1
Our objective is to place object R in a subset of the nodes
{41, As,..., Ay} that maximizes the cost reduction (1),
thereby minimizing the total access cost.

3.2 Dynamic Programming Solution
For the purpose of analysis, we first provide a generalized
definition of the problem.

Definition 1. Given fi, fo,..., fu, fur1, m1,mo,...,m,, and
li,lo, ...yl (n>0), where f1 > fo>...> f, > for1 =0,
m; >0,and l; >0 (i =1,2,...,n). Let k be an integer such
that 0 < k <mn and vi,vs,...,v, be a set of r integers such
that 1 <wv; <wvy <...<wv, <k The objective function

Acost(k : v1,vq, ..., v,) is defined as

r

Acost(k : v1,v9,...,0,) = Z((fv, = fopry) -

i=1

- Zu)7

where fopry = frr1- If r=0, define Acost(k:¢)=0.
Finding r and wvy,vs,...,v, that maximize Acost(k :
V1,02, . ..,,) Is referred to as the k-optimization problem.

The object placement problem formulated in Section 3.1
is simply an n-optimization problem, i.e., maximizing
Acost(n : v1,v9,...,v,). In the following, we develop a
dynamic programming algorithm which is inspired by
[33] to solve the problem. Theorem 1 proves that the
optimal solution to the problem must contain optimal
solutions to some subproblems.

Theorem 1. Let 1 < k <n and r > 0. Suppose vy, vy, ..., v, is

an optimal solution to the k-optimization problem and
,up s an optimal solution to the (v, —
1)-optimization problem, then wy,us,...,uy,v, is also an
optimal solution to the k-optimization problem.

U, Uy - -

Proof. By definition,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 6, JUNE 2002

Acost(vy — 1 :ug,ugy ..., uy)

> Acost(vy — 1 :v1,02,...,V4-1))
Therefore,

Acost(k : up,ug, ..., Uy, vr)

= (f’lu - fuz) cMyy — by + (fu2 — fu:‘) My — Ly

ot (fuy = fo) My = by + (fo, = fen) -mu, — by,

= Acost(v, — 1 :up,ug, ... up) + (fo, — frr1) - My, — by,
V1) + (o, = frer) -, = 1,
= (for = foo) -y, — by + (fo, = fug) - My, — Ly

+ ot (fopy = fo) M,y — Loy + (o, = fos1) -1, — o,

> Acost(v, — 1 : vy, v9,. ..,

= Acost(k : vi,va,. .., V1), V).
(2)
On the other hand, since wv;,vs,...,v, is an optimal
solution to the k-optimization problem,
Acost(k : uy,ug, ..., up,vy) 3)
< Acost(k : v1,v2, ..., Vp_1), Ur).
Combining (2) and (3), we have
Acost(k = up, u, ..., uy,v,) = Acost(k : v, va,..., V1), V7).
Hence, the theorem is proven. O

We need the following definitions before presenting the
recurrences for dynamic programming.

Definition 2. Let 0 < k < n. Define OPT}, to be the maximum
value of Acost(k : vq,vs,...,v,) obtained in the k-optimiza-
tion problem and Ly, is the maximum index in the optimal
solution. If the optimal solution is an empty set, define
L=-1

Obviously, OPTy = 0 and Ly = —1. From Theorem 1, we
know that if L;, > 0,
OPT,, = OPT(y, 1) + (fr, — fre1) -mp, — I,

Hence, we can check all possible locations of L; and select
the one that maximizes the objective function when
calculating OPT},. Therefore, we have

OPT, = 0
OPT;,, = mam{O, OPT;_1 + (fZ — f/H]) -my —1;
(i=1,2,...,k)}, for1<k<n,
and
Ly=-1
v if index v (1 < v < k) satisfies OPTj,
L= :OPval'i'(fv_fk+1)'mv—lva

-1 if OPT; =0.

The original object placement problem (i.e., the
n-optimization problem) can be solved using dynamic
programming with these recurrences. After computing
OPT;, and L; (0 < k <n), we can start from v, = L,, and
obtain all the locations in the optimal solution by setting
Vi = Ly, -1) iteratively for all 1 < ¢ < r. Theorem 1 ensures
the correctness of this calculation procedure.

Authorized licensed use limited to: FU JEN CATHOLIC UNIVERSITY. Downloaded on October 8, 2008 at 04:30 from IEEE Xplore. Restrictions apply.

TANG AND CHANSON: COORDINATED EN-ROUTE WEB CACHING

3.3 Coordinated Caching Scheme

In this section, we present our coordinated caching scheme
based on the previous analysis.

Every cache maintains some information on the objects
in the form of object descriptors. An object descriptor
contains the object size, the access frequency, and the miss
penalty of the object with respect to the associated node.
When a request is issued at node A,, for object R, each node
A; on the path between A, and A, piggybacks the
corresponding information f;, m;, and [; on the request
message as it passes through the node. When the request
arrives at Ay, Ay computes the optimal locations to place the
requested object based on the piggybacked information
using the dynamic programming algorithm and sends the
decision, together with the object, back to the client node A,,.
Along the way to 4,, the intermediate nodes on the routing
path adjust their cache contents according to the caching
decision. If the object is instructed to be cached at A4;, A;
executes the greedy heuristic given in Section 3.1 to select
replacement candidates and updates its cache accordingly.

Since the contents of the caches change over time, the
access frequency and miss penalty of an object with respect
to a node need to be updated from time to time. The access
frequency can be estimated based on recent request history,
which is locally available (e.g., by using a “sliding window”
technique [8]). The miss penalty is updated by the response
messages. Specifically, a variable with an initial value of 0 is
attached to each object (i.e., the response) sent to the client.
At each intermediate node along the way, the variable is
increased by the cost of the last link the object has just
traversed. This value is then used to update the miss
penalty of the object maintained by the associated cache. If
the object is inserted into the cache, the node resets the
variable to 0 before forwarding the object downstream. In
this way, the updated miss penalties of the requested object
are disseminated to all caches on the response path. To
avoid unnecessary communication overhead, the miss
penalty changes of the requested object at caches not along
the response path are not updated immediately. The same is
true for miss penalty changes caused by object removals
that may result from the insertion of the requested object.
These changes would be discovered by the related caches
upon subsequent object requests/responses. Since no
additional message exchange or probing operation is used
for information update, the communication overhead in
deploying coordinated caching is small.

3.4 Discussion

The size of an object descriptor is typically a few tens of
bytes and is negligible compared to the web object size.
Hence, the memory overhead of maintaining the descrip-
tors of cached objects is very small. On the other hand, the
descriptors of objects not stored in the cache need to be
maintained by the cache as well. Fortunately, it is not
necessary to keep all such descriptors in the cache, as
discussed below. The following theorem presents an
important property of the coordinated caching scheme.

Theorem 2. The optimal locations vy, vs, . .., v, computed by the
coordinated caching scheme satisfy the following inequalities:

599

Sor -y, > 1y, 1=1,2,...,7.

Proof. (Prove by contradiction) Suppose the coordinated
scheme places a copy of the object at node A,, (1 <i <),
where f,, -m,, <lI,.

If i =1, we have

,Ur)
= (fo, = fu,) - My — by, + Acost(n : va,vs, . ..
< fo My, — by, + Acost(n : va,vs,. .. ,v,)

S).

Acost(n : vy, ve,. ..

,r)

< Acost(n : vg,vs, ..
If i > 1, we have
Acost(n : v1,v9,...,0,)
= Acost(v(i—1) — 1 : v1,02,...,V4-9)) + (f,U(H) — fu) - My,
oy (o= far) 0 — L

+ Acost(n 1 V(1) V(ig2)s - - -5 Ur)
< Acost(v(i—1) — L v, 02,0, V-2) + (fu,) — fo) - M,
= oy + (for -, — 1) + Acost(n : vy, Vit), - - -5 V)

< ACOSt(U(ifl) —1: V1,02, .- av(i72)) + (fv(,,,]) - fu,) . mv(z,])
5 yp)
7”(7?—2)) + (fU(i—l) - fU(Hl)) T My

-5 Ur)

— Ly + Acost(n : v(y1), Viita), - -
< Acost(v—yy — 1 : 01,02, ...
— Ly + Acost(n : v(iy1), Viita), - -

= Acost(n : v1,va, ..., V(—1), V(i41)s - - - Ur)-

This implies that A, can be removed from the
solution of the coordinated scheme to obtain a higher
cost reduction, which contradicts with the optimality of
the coordinated scheme. Hence, the theorem is proven.O

Theorem 2 implies that the coordinated scheme only
needs to consider placing objects in the caches where the
replacement operation is locally beneficial (i.e., the cost
saving outweighs the cost loss with respect to the single
cache). Since the miss penalty and the cost loss generally
increase with the size of the requested object, this suggests
that the descriptors of objects with low access frequency are
less important for computing the optimal locations. Based
on this observation, we propose allocating a small auxiliary
cache (we shall call it the d-cache) at each node to store the
descriptors of the most frequently accessed objects not in
the regular cache. The size of the d-cache is negligible
compared to the regular cache which stores the objects. If
the requested object is not instructed to be cached at A; and
its descriptor is not in the d-cache, the descriptor is inserted
into the d-cache at A; when the object passes through.
Simple LFU replacement policy can be used to manage the
object descriptors in the d-caches.

An intermediate node on the routing path that does not
have the descriptor of the requested object in its d-cache
will indicate this fact by attaching a special tag to the
request message. Based on the attached information, A,
removes nodes from the candidate set whose d-caches do
not contain the object descriptor. The dynamic program-
ming algorithm is applied to the remaining nodes to
compute the optimal locations for caching. The rationale
behind this strategy is that the requested object is not

Authorized licensed use limited to: FU JEN CATHOLIC UNIVERSITY. Downloaded on October 8, 2008 at 04:30 from IEEE Xplore. Restrictions apply.

600

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 6, JUNE 2002

TABLE 1
System Parameters

Parameter Default value
Total number of nodes 200
Ratio of WAN nodes to MAN nodes 1:1
Number of network links 344
Average delay of WAN links 0.46 second
Average delay of MAN links 0.07 second
Number of servers 100

Number of objects

1000 objects per server

Object size distribution

Body: Lognormal distribution
p(l’) =— 1 — 6—(]n z—p)? /202
(n=19.357,0 =1.318).
Tail: Pareto distribution
p(z) = ek (etD)

(k = 8596,0 = 1.1).

Average size: 26 KB

Relative cache size per node

1%

D-cache size per node

8000 object descriptors

Average request rate
at each MAN node

U(1,9) requests per second

Access frequency distribution

Server: Zipf, 1/i*, oo =0.8
Object: Zipf, 1/, 3=10.8

frequently accessed at the excluded nodes compared to the
other objects and, hence, removing them from the candidate
set would not affect the optimal placement decision
significantly.

It is easy to see that the time complexity of the dynamic
programming algorithm is O(k?), where k is the number of
nodes on the path that contain the descriptor of the
requested object in their d-caches (k < n). We expect that
k is not very large in practice. This is because n is small for
popular objects as they would be cached in the network
with high density. Moreover, the descriptors of unpopular
objects would not be cached by most intermediate nodes,
resulting in small k. Therefore, the cost of computing the

optimal locations to cache the requested object is low.
The overhead in maintaining object descriptors can be

kept small by using judicious data structures. For example,
descriptors of cached objects can be organized as a heap
based on their normalized cost losses. In this way, the time
complexity for each adjustment (e.g., insertion and removal)
is O(log m), where m is the number of cached objects. Object
descriptors in the d-cache can be organized in one or more
LRU stacks if the access frequencies of objects are estimated
using a “sliding window” technique (see Section 4.1). As a
result, the time complexity for each insertion and removal
in the d-cache is O(1).

4 SIMULATION MODEL

Extensive simulation experiments have been performed to
compare the coordinated caching scheme with existing
schemes. The network in our simulation consists of
hundreds of routing nodes and content servers. It is
difficult to get trace data for a network of this size. To the
best of our knowledge, no such trace is available in the open
literature. Therefore, our simulation employed synthetic
workload generated from empirical models reported in
recent publications [34], [35], [4], [30]. We believe that the
results are valid for the purpose of comparing the relative
performance of different en-route caching schemes. This
section outlines the system settings and the caching
schemes used in our simulation.

4.1 System Settings
Table 1 shows the system parameters and their default
values used in the experiments.

The network topology is randomly generated using the
Tiers program [34]. It consists of a wide area network
(WAN) and a number of metropolitan area networks
(MAN?), in Tiers terminology. We have performed experi-
ments for a wide range of topologies consisting of different
numbers of WAN nodes, MAN nodes, and network links.
The relative performance of the caching schemes was found
to be insensitive to the topology. Due to space limitations,

2. The term “MAN” is used in Tiers [34]. Essentially, it applies to any
high-speed interconnected local area networks.

Authorized licensed use limited to: FU JEN CATHOLIC UNIVERSITY. Downloaded on October 8, 2008 at 04:30 from IEEE Xplore. Restrictions apply.

TANG AND CHANSON: COORDINATED EN-ROUTE WEB CACHING

only the results of one topology are reported in this paper.
The characteristics of this topology and the workload model
are listed in Table 1. These values are chosen based on those
reported in the open literature and what are considered
reasonable. The WAN is regarded as the backbone network
and no content servers or clients are directly attached to the
WAN nodes. Each MAN node is assumed to connect to a
content server. Every server stores a set of objects and the
object sets associated with different servers are disjoint. The
distribution of object sizes is assumed to follow a hybrid
model [35] (the probability density functions and the mean
value are given in Table 1). An en-route cache is associated
with every WAN and MAN node. Similarly to other studies
[4], [6], [8], [36], the cache size at each node is described
relative to the total size of all objects available in the
network (we shall call it the relative cache size). The d-cache
size is measured in terms of the number of object
descriptors. By default, the d-cache size is set to twice the
average number of objects the regular cache can hold.’> We
have conducted experiments for different d-cache sizes
relative to the cache size and found that the results were
similar when the cache and d-cache were capable of
accomodating the same order of objects and object
descriptors, respectively. To simulate the requests made
by the clients, a continuous request stream is randomly
generated at each MAN node. The average request rate of
each node is assigned from the distribution U(1,9) requests
per second, where U(z,y) is a uniformly distributed
number between z and y. The access frequencies of the
content servers as well as the objects maintained by a given
server both follow a Zipf-like distribution [4], [30].
Specifically, the probability of a request for object O in
server s is proportional to 1/(1¢ - j%), where s is the ith most
popular server and O is the jth most popular object in s.

Routing paths from all nodes to a given server are set to
the shortest-path tree rooted at the server, except in
Section 5.3, where the caching performance is examined
under asymmetric routing. Each network link connects two
nodes and represents one hop in the network. The average
length of all routing paths in our simulation is about
11 hops, similar to the statistics given in [32]. For simplicity,
the delay caused by sending a request and the associated
response over a network link is set proportionally to the size
of the requested object. This delay includes the propagation
delay, the transmission delay, and the look-up delay in the
en-route cache. The delays generated by the Tiers program
for the network links are taken to be the delays of an
average size object. The ratio of the average delays of
WAN links and MAN links for the default topology is
approximately 7:1 (see Table 1). The cost function is taken to
be the delay of the link. This means the generic cost in the
analytical model (see Section 3) is interpreted as the access
latency in our simulation.

To make the caching schemes less sensitive to transient
workload, a “sliding window” technique is employed to
dynamically estimate the access frequency of an object [8].
Specifically, for each object, up to K most recent reference

3. Note that this ratio is not equal to the ratio of their physical storage
capacities. The capacity of the d-cache is much smaller than that of the
regular cache.

601

times are recorded and the access frequency is computed by
f(O) :%, where K < K is the number of references
recorded, t is the current time, and tx is the Kth most
recently referenced time. K is set to 3 in our simulation
experiments [8]. To reduce the overhead, the access
frequency estimate of an object is only updated when the
object is referenced and at reasonably large intervals (say
several minutes®) to reflect aging.

4.2 Caching Schemes

In addition to the coordinated caching scheme, the follow-
ing algorithms were also included in our simulation
experiments for comparison purposes:

e LRU: This is a standard caching algorithm. The
requested object is cached by every node through
which the object passes. If there is not enough free
space, the cache purges one or more least recently
referenced objects to make room for the new object.
No d-cache is needed in this scheme.

e MODULO [15]: This is a modified LRU scheme that
employs a simple placement optimization. On the
path from the cache (or server) to the client, the
object is cached at the nodes that are a fixed number
(called cache radius) of hops apart. The caches use
the LRU policy to remove objects when necessary.
The cache radius is set to 3 in our experiment55 [15].
Similarly to LRU, no d-cache is needed in this
scheme.

e LNC-R [29]: This is a cost-based caching algorithm
shown to be effective in the context of a single proxy

server. It optimizes cache replacement by using the
function % (i.e., the normalized cost loss) to
select replacement candidates. Similarly to LRU, the
requested object is cached by all nodes along the
routing path and, for each node, the miss penalty of
the object is set to the delay of the immediate
upstream link. To obtain more accurate access
frequency estimates, the descriptors of the most
frequently accessed objects not in the regular cache
are maintained in the d-cache as in the coordinated

scheme.

5 PERFORMANCE RESULTS
5.1 Impact of Cache Size

First, we compare the effectiveness of different caching
schemes across a wide range of cache sizes, from
0.04 percent to 12.0 percent. The relative cache size of
12 percent is very large in the context of en-routing caching
due to the large network under consideration (e.g., that of a
regional ISP).

Fig. 3 shows the average access latency as a function of
the relative cache size at each node. Since the objects have
very different sizes in our workload, we also plotted the

4. Our experimental results show that caching performance is practically
the same for aging intervals of 1 and 10 minutes.

5. We have conducted experiments with different radii and found that a
cache radius of 3 gives the best overall performance under our experimental
settings.

Authorized licensed use limited to: FU JEN CATHOLIC UNIVERSITY. Downloaded on October 8, 2008 at 04:30 from IEEE Xplore. Restrictions apply.

602

35 ” T T T T T
LRU ——
& 3r* MODULO -+ -
8 ~ N LNC-R -2
T 25k T R Coordinated —<— |
S ~. .o
& X, .
& RN
S 2r Y -
¢
5 1.5 N .
2 R
] 8 ~
&n oo
= T x‘\ N m
< 0.5 S
0 1 1 1 1 | |
0.04 0.12 0.4 1.2 4.0 12.0

Cache Size Per Node (% of all contents available in logscale)

Fig. 3. Average access latency vs. cache size.

average response ratio in Fig. 4. The response ratio of a
request is defined as the ratio of its access latency to the size
of the target object. The lower the average response ratio,
the better the performance. This metric is more objective as
the effect of object size is eliminated. Moreover, users are
likely to expect short delays for small objects and willing to
tolerate longer delays for larger objects.

As can be seen, all caching schemes provide steady
performance improvement as the cache size increases. The
coordinated scheme significantly reduces the average access
latency and response ratio compared to the other schemes
examined. This shows the importance of managing object
placement and replacement strategies in an integrated
fashion. To achieve the same access latency, the schemes
that do not optimize placement decisions (LRU and LNC-R)
would require 3 to 10 times the cache space of coordinated
caching (note that the cache size axis is in logscale).
Although LNC-R incorporates various cost factors to
optimize cache replacement decisions, its performance is
similar to that of LRU. This is not surprising because cache
contents change very frequently due to frequent replace-
ments if all requested objects are stored by all intermediate
nodes on the routing path. Therefore, the miss penalties of
cached objects change very frequently for LNC-R in the

140 : : . . |
a LRU —o—
S 120 P MODULO ~+- -
= T > LNC-R -
2 100 | “eo e TsCoordinated -]
3 T
£ 80 |
2 e
g >
g 60 i
5 01 R
1) Oy
< 27 N
0 1 1] | |
004 0.2 0.4 1.2 40 120

Cache Size Per Node (% of all contents available in logscale)

Fig. 4. Average response ratio vs. cache size.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 6, JUNE 2002

] T T T T T T
09 -
0.8 - .
e 071 e ’
£ 06 | - .
T o05¢f -
L2 04 e .
3 > 7
03 F 7 LRU —=— -
MODULO -+--
02 r LNC-R -@--
01 Fe=" Coordinated —<--
0 1 | 1 1 | |
0.04 0.12 0.4 1.2 4.0 12.0

Cache Size Per Node (% of all contents available in logscale)

Fig. 5. Object hit ratio vs. cache size.

en-route caching environment and are less helpful in
making replacement decisions. The relative improvement
of coordinated caching over LRU and LNC-R increases with
cache size. Coordinated caching outperforms LRU and
LNC-R by more than 50 percent in average access latency at
cache size 12 percent. On the other hand, even though
MODULO utilizes cache space more efficiently than LRU
and LNC-R by storing the same object at fewer locations,
Fig. 3 and Fig. 4 show that it still performs much worse than
coordinated caching over a wide range of cache sizes. This
is because the placement decision of MODULO is not based
on object access frequencies so that popular and unpopular
objects are cached with the same density in the network.
The impact of MODULQ's disadvantage is less significant
as the cache size increases. Therefore, the absolute
difference between coordinated caching and MODULO
decreases with increasing cache size. However, the relative
improvement of coordinated caching remains significant for
large cache sizes. For example, at cache size 12 percent, the
average access latencies for coordinated caching and
MODULO are 0.45 and 0.61 second, respectively (about
25 percent improvement).

Fig. 5 plots the object hit ratio® curves as a function of
cache size for different caching schemes. To study the
system’s caching behavior, the object hit ratio is defined as
the ratio of the number of requests served by the caches as a
whole (as opposed to those served by the content servers) to
the total number of requests. By making optimal caching
decisions along the routing paths, the coordinated scheme
greatly improves the object hit ratio over the other schemes
examined, especially for smaller cache sizes. This implies
substantial load reduction at the content servers. Fig. 6
shows the workload of the most heavily loaded content server
in the network, where workload is measured in the number
of bytes served per second. It can be seen that the highest
server load under the coordinated scheme is considerably
lower than the other schemes. In contrast, MODULO and
LNC-R, which optimize object placement or replacement
only, have similar performance to LRU. On the other hand,

6. Similar performance trends have been observed for object hit ratio and
byte hit ratio. Due to space limitation, only the results of object hit ratio are
shown in this paper.

Authorized licensed use limited to: FU JEN CATHOLIC UNIVERSITY. Downloaded on October 8, 2008 at 04:30 from IEEE Xplore. Restrictions apply.

TANG AND CHANSON: COORDINATED EN-ROUTE WEB CACHING

1.4 T T T T T T
& LRU -o—
o L2 MODULO -+--
8 N LNC-R -&---
g 1L) Coordinated —<- |
= '
= <
g 08 —
2
Z 06 -
Q
12
s 04 - B
<
Bb
T 02t i
0 1
0.04 0.12 0.4 1.2 4.0 12.0

Cache Size Per Node (% of all contents available in logscale)
Fig. 6. Highest server load vs. cache size.

when the cache size is very large, all schemes are capable of
caching popular objects somewhere in the network. There-
fore, as shown in Fig. 5 and Fig. 6, the overall system hit
ratios of all the schemes converge. In this case, the major
benefit of coordinated caching is to reduce access latency
and response ratio by judicious placement of objects in the
caches (see Fig. 3 and Fig. 4).

The workload of the caches consists of two parts:
1) looking up the requested objects and forwarding requests
in case of cache miss and 2) reading/writing objects from/
into the cache. It is obvious that the lower the cache load,
the more scalable the caching scheme. Everything else being
equal, the overhead in look-up and forwarding requests is
proportional to the number of caches a request goes
through before obtaining the target object. Fig. 7 shows
that, on average, a request in the coordinated scheme passes
through fewer caches than in the other schemes. This
implies the coordinated caching scheme stores frequently
accessed objects closer to the clients and therefore intro-
duces lower look-up and forwarding load on the caches.
Reading and writing objects occur in the following
situations: A request causes a read operation on an en-route
cache if the request results in a cache hit and a decision to
place an object copy introduces a write operation on the

g 10

~Z

)

8

> 8 7
e

hel

&

= 6]
j=)

o]

Q

(=}

84|

g ¢ B
3 LRU —— ~
© MODULO ~+-- x
S 2r LNC-R -8-- }
2 Coordinated -

on

E 0 1 1 1 1 1

|
0.04 0.12 0.4 1.2 4.0 12.0
Cache Size Per Node (% of all contents available in logscale)

Fig. 7. Average no. of caches encountered by each req vs. cache size.

603

N
wn
o]

3]

[

o
T

LRU ——

Bl
=
=
[
Q
—
2 150 MODULO -+~ |
N LNC-R &
% Coordinated —<-
[+]
g 100 .
£ +
R
© 50t S
: IR
> ,k,_,77_77><~r~r/—/—/» —
SR : . | |
0.04 012 0.4 1.2 4.0 12.0

Cache Size Per Node (% of all contents available in logscale)
Fig. 8. Overall cache read/write load vs. cache size.

en-route cache. The read load is necessary to serve the
requests, while the write load represents an overhead for
caching. To compare the overall read/write load, we
calculated the mean aggregated read and write load
(measured in bytes) introduced by each request on all the
caches. As shown in Fig. 8, coordinated caching has the
lowest read/write load among all the schemes studied. By
contrast, LRU and LNC-R introduce 3 to 35 times the read/
write load of coordinated caching because they do not
consider object placement optimization. MODULO has
lower read/write load compared to LRU and LNC-R, but
its load is still much higher than that of the coordinated
scheme. Our data shows the read load takes up 75 percent
to 90 percent of the overall read/write load in coordinated
caching. Since the read load of coordinated caching is
higher than the other schemes due to its higher cache hit
ratio (see Fig. 5), the results presented in Fig. 8 suggest that
the coordinated scheme involves substantially lower write
load (i.e., overhead) on the caches. Thus, coordinated
caching has better scalability than the other schemes.
Finally, we examine the load on the network links. Fig. 9
shows the average network traffic (measured in byte - hops)
required to satisfy a request and Fig. 10 shows the load
(measured in bytes/second) of the most congested link in

250 T T T T
g LRU ——
= e MODULO -+--
2 200 | RNy \ LNC-R -8 o
A el " Coordinated —<--
X < h
g 150 S -~ 8 i
2 .
£
=]
Z 100 i
5}
@) o
= RN
3 ¥
o= 50 | N
_% x
=
<
m
0 1 1 1 1 1 1
0.04 0.12 0.4 1.2 4.0 12.0

Cache Size Per Node (% of all contents available in logscale)

Fig. 9. Bandwidth consumption vs. cache size.

Authorized licensed use limited to: FU JEN CATHOLIC UNIVERSITY. Downloaded on October 8, 2008 at 04:30 from IEEE Xplore. Restrictions apply.

604

4 T T T T T T
- LRU ——
_ 35 F MODULO -+-- 7]
3 LNC-R -&---
§ 3 e Coordinated —<—-]
~
€ 25t - -
E
- 2F 1
~
g
= 15 F " 1
8 N
2L AN
T N
05 x]
0 1 | 1 1 1 |
0.04 0.12 0.4 1.2 4.0 12.0

Cache Size Per Node (% of all contents available in logscale)
Fig. 10. Highest link load vs. cache size.

the network. From these figures, it can be clearly seen that
the coordinated caching scheme results in much lower load
on the network links than the other schemes. This further
demonstrates the effectiveness of coordinated caching in
bringing popular objects closer to the clients.

5.2 Impact of Access Frequency Distribution

In this set of experiments, we examine the impact of access
frequency distribution on the effectiveness of caching. For
simplicity, the Zipf parameters for servers and objects (i.e.,
a and p) are assigned equal values. Figs. 11, 12, and 13 show
the average access latency, the average response ratio, and
the object hit ratio, respectively, for values of a and (3
between 0.2 and 1.2.

The coordinated caching scheme consistently provides
the best performance over a wide range of access frequency
distributions. Under relatively homogeneous reference
patterns (i.e., small Zipf parameters, see the left part of
the figures), cached objects account for a relatively low
proportion of the requests since all objects have similar
access frequencies. Therefore, the relative performance
difference among the caching schemes is not very large.
With increasing skewness in the access pattern, the relative
improvement of coordinated caching in terms of access
latency and response ratio is more substantial. This is

35 T T T T T T
LRU —o—
~ 3F MODULO -+-- ~
2 LNC-R -2
E 25 F o Tl \ Coordinated —<— |
£ N
2 X
5 2f 1
g
;tg 1.5 —
(5]
g 1r 1
b5}
>
< 0.5 N
X
O | | 1 | | |
0.2 0.4 0.6 0.8 1 1.2

Zipf Parameter

Fig. 11. Average access latency vs. Zipf parameter.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 6, JUNE 2002
140 T T T T ; :

= LRU —-—

Q120 MODULO -+-- T

% B LNC-R -5

2 100 x‘* Coordinated —<- |

2 S

S K

g 80f : i

3

g

g 60 [|

5]

a4

o 40 i

on

I}

2 5

= 0 _

0 L | 1 1 1 |
02 04 06 08 1 12
Zipf Parameter

Fig. 12. Average response ratio vs. Zipf parameter.

1 T T T T T T
0.8 -
2
S o6t .
=
51
L 04 F LRU —-— A
3 MODULO -+--
LNC-R -8---
02+ Coordinated —<- |
0 | 1 1 1 | |
0.2 0.4 0.6 0.8 1 1.2

Zipf Parameter

Fig. 13. Object hit ratio vs. Zipf parameter.

because the coordinated scheme caches frequently accessed
objects closer to the clients, as discussed in Section 5.1. For
example, the coordinated scheme reduces average response
time by 20 percent, 43 percent, and 51 percent compared to
LRU and by 10 percent, 23 percent, and 33 percent
compared to MODULO for Zipf parameters of 0.2, 0.8,
and 1.2, respectively. Fig. 13 shows that object hit ratio
increases with access skewness for all caching schemes.
Since the default cache size used here (4 percent) is fairly
large, coordinated caching does not provide significant
improvement in object hit ratio, as discussed in Section 5.1.

5.3 Impact of Routing Asymmetry

We have assumed that the routing paths are symmetric in
the analytical model, i.e., the route from node A to node B is
the same as the route from B to A. Although this is true in
many cases,” there could be some upstream and down-
stream route pairs in the Internet that do not contain the
same set of intermediate nodes [32]. In this section, the
coordinated caching scheme is modified to handle routing
asymmetry and compared with the existing algorithms.
Consider the asymmetric routes of a request and the
associated response shown in Fig. 14, where w is the node

7. Some transparent web caching approaches guarantee the request and
the response paths pass through the same set of caches (e.g., see [18]).

Authorized licensed use limited to: FU JEN CATHOLIC UNIVERSITY. Downloaded on October 8, 2008 at 04:30 from IEEE Xplore. Restrictions apply.

TANG AND CHANSON: COORDINATED EN-ROUTE WEB CACHING

/_» @ downstream route % @‘\‘
-~ ()

\

605

Q nodesin UND
Q nodesin U-D
@ nodesin D-U

upstream route

Fig. 14. Asymmetric route pair.

satisfying the request and c is the client node issuing the
request. Let U and D be the sets of nodes on the
upstream and downstream routes, respectively. The union
of U and D can be divided into three disjoint subsets:
UUD=(D—-U)U(U— D)U (UnN D). The benefits of cach-
ing the requested object at the nodes in each subset are
discussed below:

e D —U: Caching the object at the nodes in D — U is
not useful because subsequent requests from ¢ will
not go through these nodes. Therefore, they should
not be considered in the computation of the optimal
locations to cache the requested object. The revised
coordinated caching scheme simply collects status
information of the caches along the upstream route
(i.e., the request path) and computes the optimal
caching locations among them. The nodes in D — U
do not update their caches and d-caches when the
requested object (i.e., the response) passes through
them.

e U — D: Placing the object at the nodes in U — D
requires additional object transfer since the object
does not pass through these nodes when it is being
sent to the client node. To avoid extra network traffic
and control overhead, the object is not placed at the
nodes in U — D in our scheme. Note that, under
asymmetric routing, it is possible that some com-
puted optimal caching locations are in U — D. In this
case, we simply discard these locations.

e UnND: The nodes in U N D are most appropriate to
cache the requested object (e.g., the nodes a and b in
Fig. 14). Each node v € (UND) takes the same

1.6 f

e R = R N

1.2 f

Average Access Latency (sec)

0.8 f -
06 k|| ! ! ‘ B -
D b D i LRU —
04 17 D D { © MODULO -—- .
Vo Vo JNC;—I\ ,,,,,
02 i L b ! iCoprdipated - n
ollbii Lhg Jhgs hE il

0/0/0.0 26/27/1.6 47/43/2.0 72/68/3.3 84/80/4.8
Degree of Routing Asymmetry

Fig. 15. Average access latency under asymmetric routing.

O
4

actions as in the case of symmetric routing.
Specifically, if v is included in the computed optimal
locations, the object is inserted into its cache;
otherwise, v updates the miss penalty of the object
in its d-cache.

To allow fair comparisons, the three caching schemes
described in Section 4.2 were also modified accordingly in
this set of experiments. Specifically, LRU and LNC-R place
the requested object at every node in U N D and MODULO
places the requested object at every node in U N I, where
D' is a subset of D containing nodes that are three hops
apart on the downstream route.

To study the impact of routing asymmetry on caching
performance, we artificially generated some asymmetric
route pairs in our experiments. For each node A4, two
different routing trees, an upstream tree and a downstream
tree, are built. The messages sent to A use the route in the
upstream tree, while the messages sent from A make use of
the route in the downstream tree. The routing asymmetry
degree is characterized by the triple (x,y, z), meaning that
x percent of all route pairs are asymmetric, y percent of the
asymmetric route pairs differ in at least two hops, and the
average difference of all asymmetric route pairs is z hops.
Obviously, the larger the values of z, y, and z, the higher the
degree of routing asymmetry. The caching schemes were
evaluated under a variety of asymmetry degrees (listed in
increasing order)®: (26/27/2.6), (47/43/2.0), (72/68/3.3),
and (84/80/4.8). We note that the asymmetry level of (47/
43/2.0) is closest to the statistics reported in the literature
[32]. Figs. 15, 16, and 17 show the average access latency, the
average response ratio, and the object hit ratio, respectively,
for asymmetric routing with different degrees.

From Figs. 15, 16, and 17, we observe that the relative
performance of the caching schemes under asymmetric
routing is quite similar to that for the symmetric routing
case (i.e., the case of (0/0/0.0)). The coordinated caching
scheme still consistently outperforms all the other schemes
studied significantly. This further verifies the importance of
coordinating object placement and replacement strategies. It
is interesting to note that the performance of LRU and
LNC-R relative to MODULO and the coordinated scheme
improves slightly (about 3 percent) under a high level of
routing asymmetry. The reason is because LRU and LNC-R
will place fewer copies of the same object in the network
when the upstream and downstream routes have fewer
nodes in common. This somewhat compensates for their
disadvantage of caching unpopular objects (which make up

8. Note that the average length of all routes is about 11 hops.

Authorized licensed use limited to: FU JEN CATHOLIC UNIVERSITY. Downloaded on October 8, 2008 at 04:30 from IEEE Xplore. Restrictions apply.

606
80 : : | | |
~ 70 _ B |
m ! . L o .
é 60 |
2 50 H 1 |
< L
~ L
2 [
z 407 B |
g 1
z !
4 30 hH } |
~ | 5
5} } ‘ |
S | L LRU ——
: } ' MODULO ----
c o | o TiNer
i ‘ i 1Coprdinated -~
0 1I:: P | D

0/0/0.0 26/27/1.6 47/43/2.0 72/68/3.3 84/80/4.8
Degree of Routing Asymmetry

Fig. 16. Average response ratio under asymmetric routing.

the majority of the objects due to the Zipf-like request
distribution) with high density in the network.

6 CONCLUSION

Object placement and replacement are two important issues
in en-route web cache management. In this paper, we have
presented a coordinated caching scheme where object
placement and replacement policies are managed in an
integrated fashion. In this scheme, status information of the
caches along the routing path of a request is used in
dynamically determining where to cache the requested
object and what to replace if necessary. The optimal
placement decision is obtained using a low-cost dynamic
programming algorithm. We have performed extensive
simulation experiments to compare the proposed coordi-
nated scheme with a number of existing caching algorithms.
The results show that the coordinated caching scheme
effectively reduces access latency, server load, and network
traffic in both symmetric and asymmetric routing situations
and is more scalable in terms of cache read /write load. The
proposed scheme considerably outperforms existing algo-
rithms which consider either placement or replacement at
individual caches only.

0.6 [

0.5 f

Object Hit Ratio

0.3 1

02 B :
b EM

§C0

04 | i & %

0/0/0.0 26/27/1.647/43/2.072/68/3.3 84/80/4.8
Degree of Routing Asymmetry

Fig. 17. Object hit ratio under asymmetric routing.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 6, JUNE 2002

ACKNOWLEDGMENTS
The work described in this paper was supported by a
grant from the Research Grants Council of the Hong

Kong Special Administrative Region, China (Project No.
HKUST6066/00E).

REFERENCES

[1] S. Glassman, “A Caching Relay for the World Wide Web,”
Computer Networks and ISDN Systems, vol. 27, no. 2, pp. 165-173,
Nov. 1994.

[2] J. Wang, “A Survey of Web Caching Schemes for the Internet,”
ACM SIGCOMM Computer Comm. Rev., vol. 29, no. 5, pp. 36-46,
Oct. 1999.

[3] B.D. Davison, “A Web Caching Primer,” IEEE Internet Computing,
vol. 5, no. 4, pp. 38-45, July/Aug. 2001.

[4] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
Caching and Zipf-Like Distributions: Evidence and Implications,”
Proc. IEEE INFOCOM ’99, pp. 126-134, Mar. 1999.

[5] R.P.Wooster and M. Abrams, “Proxy Caching that Estimates Page
Load Delays,” Computer Networks and ISDN Systems, vol. 29, nos. 8-
13, pp. 977-986, Sept. 1997.

[6] P. Cao and S. Irani, “Cost-Aware WWW Proxy Caching
Algorithms,” Proc. First USENIX Symp. Internet Technologies and
Systems (USITS), pp. 193-206, Dec. 1997.

[71 C. Aggarwal, J.L. Wolf, and P.S. Yu, “Caching on the World Wide
Web,” IEEE Trans. Knowledge and Data Eng., vol. 11, no. 1, pp. 94-
107, Jan./Feb. 1999.

[8] J. Shim, P. Scheuermann, and R. Vingralek, “Proxy Cache
Algorithms: Design, Implementation, and Performance,” IEEE
Trans. Knowledge and Data Eng., vol. 11, no. 4, pp. 549-562, July/
Aug. 1999.

[9] J-M. Menaud, V. Issarny, and M. Banatre, “Improving the
Effectiveness of Web Caching,” Advances in Distributed Systems,
Advanced Distributed Computing: From Algorithms to Systems,
pp. 375-401, Springer-Verlag, 2000.

[10] S. Jin and A. Bestavros, “Greedydual* Web Caching Algorithm:
Exploiting the Two Sources of Temporal Locality in Web Request
Streams,” Computer Comm., vol. 24, no. 2, pp. 174-183, Feb. 2001.

[11] A. Chankhunthod, P.B. Danzig, C. Neerdaels, M.F. Schwartz, and
K.J. Worrell, “A Hierarchical Internet Object Cache,” Proc. 1996
USENIX Ann. Technical Conf., pp. 153-163, Jan. 1996.

[12] R. Tewari, M. Dahlin, HM. Vin, and].S. Kay, “Design
Considerations for Distributed Caching on the Internet,” Proc.
19th IEEE Int’l Conf. Distributed Computing Systems (ICDCS),
pp- 273-284, June 1999.

[13] P. Rodriguez, C. Spanner, and E.W. Biersack, “Analysis of Web
Caching Architectures: Hierarchical and Distributed Caching,”
IEEE/ACM Trans. Networking, vol. 9, no. 4, pp. 404-418, Aug. 2001.

[14] “Proxy Cache Comparison,”http://www.web-caching.com/
proxy-comparison.html, 2001.

[15] S. Bhattacharjee, K.L. Calvert, and E.W. Zegura, “Self-Organizing
Wide-Area Network Caches,” Proc. IEEE INFOCOM ’98, pp. 600-
608, Mar. 1998.

[16] P. Rodriguez and S. Sibal, “Spread: Scalable Platform for Reliable
and Efficient Automated Distribution,” Computer Networks, vol. 33,
nos. 1-6, pp. 33-49, June 2000.

[17] P. Krishnan, D. Raz, and Y. Shavitt, “The Cache Location
Problem,” IEEE/ACM Trans. Networking, vol. 8, no. 5, pp. 568-
582, Oct. 2000.

[18] P. Rodriguez, S. Sibal, and O. Spatscheck, “Tpot: Translucent
Proxying of TCP,” Proc. Fifth Int'l Web Caching and Content Delivery
Workshop (WCW), May 2000.

[19] M. Rabinovich and H. Wang, “Dhttp: An Efficient and Cache-
Friendly Transfer Protocol for Web Traffic,” Proc. IEEE INFOCOM
01, pp. 1597-1606, Apr. 2001.

[20] D.L. Tennenhouse,].M. Smith, W.D. Sincoskie, D.]. Wetherall, and
G.J. Minden, “A Survey of Active Network Research,” IEEE
Comm. Magazine, vol. 35, no. 1, pp. 80-86, Jan. 1997.

[21] D. Wessels and K. Claffy, “ICP and the Squid Web Cache,” IEEE].
Selected Areas in Comm., vol. 16, no. 3, pp. 345-357, Apr. 1998.

[22] L. Fan, P. Cao, J. Almeida, and A.Z. Broder, “Summary Cache: A
Scalable Wide-Area Web Cache Sharing Protocol,” IEEE/ACM
Trans. Networking, vol. 8, no. 3, pp. 281-293, June 2000.

Authorized licensed use limited to: FU JEN CATHOLIC UNIVERSITY. Downloaded on October 8, 2008 at 04:30 from IEEE Xplore. Restrictions apply.

TANG AND CHANSON: COORDINATED EN-ROUTE WEB CACHING

[23] M. Rabinovich, J. Chase, and S. Gadde, “Not All Hits Are Created
Equal: Cooperative Proxy Caching over a Wide Area Network,”
Computer Networks and ISDN Systems, vol. 30, nos. 22-23, pp. 2253-
2259, Nov. 1998.

[24] B. Li, MJ. Golin, G.F. Italiano, X. Deng, and K. Sohraby, “On the
Optimal Placement of Web Proxies in the Internet,” Proc. IEEE
INFOCOM 99, pp. 1282-1290, Mar. 1999.

[25] K.W. Ross, “Hash Routing for Collections of Shared Web Caches,”
IEEE Network, vol. 11, no. 6, pp. 37-44, Nov./Dec. 1997.

[26] K.-L. Wu and P.S. Yu, “Load Balancing and Hot Spot Relief for
Hash Routing among a Collection of Proxy Caches,” Proc. 19th
IEEE Int’l Conf. Distributed Computing Systems (ICDCS), pp. 536-
543, June 1999.

[27] P.S.Yu and E.A. MacNair, “Performance Study of a Collaborative
Method for Hierarchical Caching in Proxy Servers,” Computer
Networks and ISDN Systems, vol. 30, nos. 1-7, pp. 215-224, Apr.
1998.

[28] S. Williams, M. Abrams, C.R. Standridge, G. Abdulla, and E.A.
Fox, “Removal Policies in Network Caches for World Wide Web
Documents,” Proc. ACM SIGCOMM '96, pp. 293-305, Aug. 1996.

[29] P. Scheuermann, J. Shim, and R. Vingralek, “A Case for Delay-
Conscious Caching of Web Documents,” Computer Networks and
ISDN Systems, vol. 29, nos. 8-13, pp. 997-1005, Sept. 1997.

[30] V.N. Padmanabhan and L. Qiu, “The Content and Access
Dynamics of a Busy Web Site: Findings and Implications,” Proc.
ACM SIGCOMM "00, pp. 111-123, Aug. 2000.

[31] B. Krishnamurthy and C.E. Wills, “Piggyback Server Invalidation
for Proxy Cache Coherency,” Computer Networks and ISDN
Systems, vol. 30, nos. 1-7, pp. 185-193, Apr. 1998.

[32] V. Paxson, “End-to-End Routing Behavior in the Internet,”
IEEE/ACM Trans. Networking, vol. 5, no. 5, pp. 601-615, Oct. 1997.

[33] B. Li, X. Deng, M.J. Golin, and K. Sohraby, “On the Optimal
Placement of Web Proxies in the Internet: The Linear Topology,”
Proc. Eighth IFIP TC-6 Int’l Conf. High Performance Networking
(HPN), pp. 485-495, Sept. 1998.

[34] K.L. Calvert, M.B. Doar, and E-W. Zegura, “Modeling Internet
Topology,” IEEE Comm. Magazine, vol. 35, no. 6, pp. 160-163, June
1997.

[35] P. Barford and M. Crovella, “Generating Representative Web
Workloads for Network and Server Performance Evaluation,”
Proc. ACM SIGMETRICS ’98, pp. 151-160, July 1998.

[36] S.Jin and A. Bestavros, “Popularity-Aware Greedydual-Size Web
Proxy Caching Algorithms,” Proc. 20th IEEE Int’l Conf. Distributed
Computing Systems (ICDCS), pp. 254-261, Apr. 2000.

607

Xueyan Tang received the BEng degree in
computer science and engineering from Shang-
hai Jiao Tong University, Shanghai, China, in
1998. He is currently a PhD candidate in the
Department of Computer Science at the Hong
Kong University of Science and Technology. His
research interests include web caching and
performance, Internet technologies, mobile com-
puting, and distributed systems.

Samuel T. Chanson received the PhD degree
in electrical engineering and computer sciences
from the University of California, Berkeley in
1975. He was a faculty member at the School of
Electrical Engineering, Purdue University for two
years before joining the Department of Compu-
5 ter Science at the University of British Columbia,
' ‘ where he became a full professor and director of
‘ its Distributed Systems Research Group. He
. joined the Hong Kong University of Science and
Technology in 1993. Professor Chanson has been widely consulted by
industry and government institutes in North America and Asia in Internet
and communication technologies and has served on the program
committees of numerous international conferences on distributed
systems and computer communications. He was the conference cochair
of IEEE ICDCS in 1998 and IFIP FORTE/PSTV in 1999. He currently
serves on the editorial boards of three international journals, including
the IEEE/ACM Transactions on Networking. His research interests
include web technologies, multimedia communication, Internet security,
and distributed systems. He has published more than 150 papers in the
above areas.

> For more information about this or any computing topic, please
visit our Digital Library at http://computer.org/publications/dlib.

Authorized licensed use limited to: FU JEN CATHOLIC UNIVERSITY. Downloaded on October 8, 2008 at 04:30 from IEEE Xplore. Restrictions apply.

