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Abstract—Adequate coverage is very important for sensor networks to fulfill the issued sensing tasks. In many working environments,

it is necessary to make use of mobile sensors, which can move to the correct places to provide the required coverage. In this paper, we

study the problem of placing mobile sensors to get high coverage. Based on Voronoi diagrams, we design two sets of distributed

protocols for controlling the movement of sensors, one favoring communication and one favoring movement. In each set of protocols,

we use Voronoi diagrams to detect coverage holes and use one of three algorithms to calculate the target locations of sensors if holes

exist. Simulation results show the effectiveness of our protocols and give insight on choosing protocols and calculation algorithms

under different application requirements and working conditions.

Index Terms—Mobile sensor networks, sensor coverage, distributed algorithm.

�

1 INTRODUCTION

WIRELESS sensor networks can greatly enhance our
capability to monitor and control the physical

environment. Sensor networks are revolutionizing the
traditional methods of data collection, bridging the gap
between the physical world and the virtual information
world [11], [15], [24], [28]. Sensor nodes must be deployed
appropriately to reach an adequate coverage level for the
successful completion of the issued sensing tasks [5], [21].

In many potential working environments, such as remote
harsh fields, disaster areas, and toxic urban regions, sensor
deployment cannot be performed manually. To scatter
sensors by aircraft is one possible solution. However, using
this technique, the actual landing positions cannot be
controlled because of the existence of wind and obstacles,
such as trees and buildings. Consequently, the coverage
may be inferior to the application requirements no matter
how many sensors are dropped. Moreover, in many cases,
such as during in-building toxic leaks [12], [13], chemical
sensors must be placed inside a building from the outside.
In these scenarios, it is necessary to make use of mobile
sensors, which can move to the correct places to provide the
required coverage. One example of a mobile sensor is the
Robomote [26]. These sensors are smaller than 0:000047 m3

and cost less than $150.
Most previous research efforts on deploying mobile

sensors are based on centralized approaches. For example,
the work in [30] assumes that a powerful cluster head is
available to collect the sensor locations and determine the
target locations of the mobile sensors. However, in many
sensor deployment environments such as disaster areas and
battlefields, a central server may not be available. It may
also be hard to organize sensors into clusters due to
network partitions. Further, centralized approaches intro-
duce a single point of failure. Sensor deployment has also
been addressed in the field of robotics [12], where sensors

are deployed iteratively one by one, utilizing the location
information obtained from the previous deployment. Since
sensors are deployed one by one, the deployment time is
very long, which can significantly increase the network
initialization time.

In this paper, we propose two sets of distributed
protocols for controlling the movement of sensors to
achieve target coverage: basic protocols and virtual movement
protocols. In the basic protocols, sensors move iteratively,
eventually reaching the final destination. In each iteration,
sensors detect coverage holes using a Voronoi diagram. If
holes exist, they calculate the target locations to heal the
holes and move. In the virtual movement protocols, sensors
do not perform iterative physical movement. Instead, after
calculating the target locations, sensors move virtually and
exchange these new virtual locations with the sensors
which would be their neighbors if they had actually moved.
The real movement only occurs when the communication
cost to reach their logical neighbors is too high or when they
determine their final destinations.

In both the basic and virtual movement protocols, three
algorithms, VEC, VOR, and Minimax, are proposed to
calculate the target locations if coverage holes exist. In VEC,
sensors move away from a dense area; in VOR, sensors
migrate towards holes; in Minimax, sensors also move
towards holes, but more conservatively with the considera-
tion of not generating new holes. Simulation results show
that our distributed protocols are effective in terms of
coverage, deployment time and movement.

The rest of the paper is organized as follows. Section 2
introduces some preliminaries. In Section 3, we present the
basic self-deployment protocols and, in Section 4, we
present the virtual movement protocols. Section 5 evaluates
the performance of the proposed protocols. Based on the
simulation results, we justify our design and discuss future
work in Section 6.

2 PRELIMINARIES

2.1 Localization Techniques

Location awareness is important for wireless sensor net-
works since many applications such as environment
monitoring and target tracking depend on knowing the
locations of sensor nodes. Due to the ad hoc nature of such
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networks, each node must determine its location through a
location discovery process. For outdoor systems, the Global
Positioning System (GPS) [3] is one method for this
purpose. GPS may not be cost effective or work well
indoors.

Many techniques have been proposed to enable each
node to determine its location indoors with only limited
communication with nearby nodes. Most of these methods
exploit received signal strength [22], time difference of
arrival of two different signals [25], and angle of arrival [7].
Hu and Evans [14] have provided detailed discussion of
these techniques. In subsequent discussion in this paper, we
assume that sensor nodes know their locations.

2.2 Path Planning

In systems that exploit mobile sensors, finding paths on
which these mobile sensors can move to desiring destina-
tions, especially when there exist obstacles in the field, is an
important problem. The problem has been studied in the
area of robotics [6], [17]. Recently, Li et al. [18] studied the
problem in sensor networks. They combined the above
methods to find the best motion path and modified them to
exploit the distributed nature of sensor networks. In this
paper, we do not study this problem further; we assume
that mobile sensors can move to any location where they are
asked to move based on the existing techniques. We
comment more on the impact of this assumption in
Section 5.2.

2.3 Sensing Model

Each type of sensor has its unique sensing model
characterized by its sensing area, resolution, and accuracy.
The sensing area depends on multiple factors such as the
strength of the signals generated at the source, the distance
between the source and the sensor, the attenuation rate in
propagation, and the desired confidence level of sensing.
Let us consider an application [8] in which a network of
acoustic sensors is deployed for detecting mobile vehicles.

Due to signal attenuation, sensors closer to a vehicle can
detect higher strength of acoustic signals than sensors
farther away from the vehicle and, thus, have higher
confidence for detecting the vehicle. Therefore, given a
confidence level, we can derive a sensing range surround-
ing each sensor. In this paper, we only consider the
isotropic sensing models. Each sensor node is associated
with a sensing area which is represented by a circle with the
same radius. This is a common assumption when compar-
ing algorithms for sensing coverage [20], [21].

2.4 Voronoi Diagram

The Voronoi diagram [4], [9] is an important data
structure in computational geometry. It represents the
proximity information about a set of geometric nodes. The
Voronoi diagram of a collection of nodes partitions the
space into polygons. Every point in a given polygon is
closer to the node in this polygon than to any other node.
Fig. 1a is an example of the Voronoi diagram, and Fig. 1b
is an example of a Voronoi polygon. We define the
Voronoi polygon of s0 as G0 ¼ hV0; E0i, where V0 is the
set of Voronoi vertices of s0, and E0 is the set of Voronoi
edges. As shown in Fig. 1b, V0 ¼ fV1; V2; V3; V4; V5g,
and E0 ¼ fV1V2; V2V3; V3V4; V4V5; V5V1g. We use N 0 to
denote the set of Voronoi neighbors of s0. In Fig. 1b,
N 0 ¼ fs1; s2; s3; s4; s5g. The Voronoi edges of s0 are the
vertical bisectors of the line passing s0 and its Voronoi
neighbors, e.g., V1V5 is s0s1’s bisector.

Our sensor deployment protocols are based on Voronoi
diagrams. As shown in Fig. 1, each sensor, represented by a
number, is enclosed by a Voronoi polygon. These polygons
together cover the target field. The points inside one
polygon are closer to the sensor inside this polygon than
the sensors positioned elsewhere. If this sensor cannot
detect the expected phenomenon in its Voronoi polygon, no
other sensor can detect it. Therefore, to examine coverage
holes, each sensor only needs to check its own Voronoi
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polygon. If its sensing area cannot cover the polygon, there
are some coverage holes.

To construct the Voronoi polygon, sensors first calculate
the bisectors of their neighbors and themselves. These
bisectors (and possibly the boundary of the target field)
form several polygons. The smallest polygon encircling the
sensor is the Voronoi polygon of this sensor.

2.5 Sensing Range versus Communication Range

In a distributed case, sensors can exchange the location
information by broadcasting. It is possible that some
Voronoi neighbors of a sensor are out of its communication
range, and, consequently, the calculated polygon of this
sensor is not accurate. If the sensing range is much shorter
than the communication range, then the inaccurate con-
struction of Voronoi cells will not affect the detection of
coverage holes. This is because if Voronoi neighbors cannot
reach each other by direct communication, their distance is
large enough that there is a coverage hole. If communica-
tion range is similar to the sensing range, sensors may
misdetect coverage holes. We describe our heuristics to deal
with the inaccurate construction of the Voronoi polygons in
Section 3.

3 THE BASIC DEPLOYMENT PROTOCOLS

Our deployment protocol runs iteratively. In each round,
sensors first broadcast their locations and construct their
Voronoi polygons based on the received neighbor informa-
tion. Sensors then determine the existence of coverage holes
by examining their Voronoi polygons. If any hole exists,
sensors calculate where to move to eliminate or reduce the
size of the coverage hole. Three algorithms are proposed to
calculate the target locations: VEC pushes sensors away from
a densely covered area, VOR pulls sensors to the sparsely
covered area, and Minimax moves sensors to the center of
their Voronoi polygon. Termination conditions are defined
for each algorithm.

3.1 The VECtor-Based Algorithm (VEC)

VEC is motivated by the attributes of electromagnetic
particles: When two electromagnetic particles are too close
to each other, an expelling force pushes them apart. Assume
dðsi; sjÞ is the distance between sensor si and sensor sj. dave

is the average distance between two sensors when the
sensors are evenly distributed in the target area, which can
be calculated beforehand since the target area and the
number of sensors to be deployed are known. The virtual
force between two sensors si and sj will push them to move
ðdave � dðsi; sjÞÞ=2 away from each other. In case one sensor
covers its Voronoi polygon completely and should not
move, the other sensor will be pushed dave � dðsi; sjÞ away.
In summary, the virtual force will push the sensors dave
away from each other if a coverage hole exists in either of
their Voronoi polygons. The virtual force exerted by sj on si
is denoted as ~FFij, with the direction from sj to si.

In addition to the virtual forces generated by sensors, the
field boundary also exert forces, denoted as ~FFb, to push
sensors too close to the boundary inward. ~FFb exerted on si
will push it to move dave=2� dbðsiÞ, where dbðsiÞ is the
distance of si to the boundary. Since dave is the average
distance between sensors, dave=2 is the distance from the
boundary to the sensors closest to it when sensors are
evenly distributed.

The final overall force on sensors is the vector summa-
tion of virtual forces from the boundary and all Voronoi
neighbors. These virtual forces will push sensors from the
densely covered area to the sparsely covered area. Thus,
VEC is a “proactive” algorithm, which tries to relocate
sensors to be evenly distributed.

As an enhancement, we add a movement-adjustment
scheme to reduce the error of virtual-force. When a sensor
determines its target location, it checks whether the local
coverage will be increased by its movement. The local
coverage is defined as the coverage of the local Voronoi
polygon and can be calculated by the intersection of the
polygon and the sensing circle. If the local coverage is not
increased, the sensor should not move to the target location.
Although the general direction of the movement is correct,
the local coverage may not be increased because the target
location is too far away. To address this problem, the sensor
will choose the midpoint or 3=4 point between its target
location and its current location as its new target location. If
the local coverage is increased at the new target location, the
sensor will move; otherwise, it will stay.

Fig. 2 shows an operational example of VEC. Round 0
is the initial random deployment of 35 sensors in a
50 m� 50 m flat space, with the sensing range of six meters
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Fig. 2. Snapshot of the execution of VEC. (a) Round 0. (b) Round 1. (c) Round 2.



and communication range of 20 meters. The initial coverage
is 75.7 percent. After Round 1 and Round 2, the coverage is
improved to 92.2 percent and 94.7 percent, respectively. A
formal description of the VEC algorithm is shown in Fig. 3.

3.2 The VORonoi-Based Algorithm (VOR)

Contrary to the VEC algorithm, VOR is a pull algorithm
which pulls sensors to cover their local maximum coverage
holes. In VOR, if a sensor detects the existence of coverage
holes, it will move toward its farthest Voronoi vertex
(denoted as Vfar), and stop when the farthest Voronoi vertex
can be covered. As in VEC, in VOR, a sensor needs only to
check its own Voronoi polygon. Fig. 4 illustrates VOR.

Point A is the farthest Voronoi vertex of s0, and dðA; s0Þ is
longer than the sensing range. To heal the hole, s0 moves
along line s0A to Point B, where dðA;BÞ is equal to the
sensing range.

We limit the maximum moving distance to be at most
half of the communication range minus the sensing range to
avoid the situation shown in Fig. 5, in which s0 is not aware
of the existence of s1 because of communication limitations.
When s0 does not know s1, it will calculate its local Voronoi
polygon as the dotted one and view the area around A as a
coverage hole. If s0 moves toward point A and stops at a
distance dðA;BÞ (sensing range), apparently s0 has moved
more than needed and it tries to cover the area which is
already covered by s1. It is quite possible it has to move
back after it gets to know s1. Therefore, we set the
maximum moving distance such that a sensor moves
towards the coverage hole step-by-step. After s0 moves a
certain distance and gets closer to s1, it can communicate
with s1 and calculate the correct Voronoi polygon. Then the
risk of moving oscillation can be greatly reduced.

VOR is a greedy algorithm which tries to fix the largest
hole. Moving oscillations may occur if new holes are
generated due to a sensor’s leaving. To deal with this
problem, we add oscillation control which does not allow
sensors to move backward immediately. Before a sensor
moves, it first checks whether its moving direction is
opposite to that in the previous round. If yes, it stops for
one round. In addition, the movement adjustment men-
tioned in VEC is also applied here.

The deployment protocol using VOR is similar to the
VEC Protocol, except that in line (2.2) VECðÞ is replaced by
VORðÞ, which is shown below.

We run VOR on the same initial deployment as shown
in Fig. 2a. After round 1 and round 2, the coverage is
improved to 89.2 percent and 95.6 percent, respectively.

3.3 The Minimax Algorithm

Similarly to VOR, Minimax fixes holes by moving closer to
the farthest Voronoi vertex, but it does not move as far as
VOR to avoid situations in which a vertex that was
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Fig. 3. The VEC protocol at sensor si.

Fig. 4. VOR.

Fig. 5. Inaccurate Voronoi polygon.



originally close becomes a new farthest vertex. Minimax
chooses the target location as the point inside the Voronoi
polygon whose distance to the farthest Voronoi vertex (Vfar)
is minimized. We call this point the Minimax point, denoted
as Om. This algorithm is based on the belief that a sensor
should not be too far away from any of its Voronoi vertices
when the sensors are evenly distributed. Minimax can
reduce the variance of the distances to the Voronoi Vertices,
resulting in a more regular shaped Voronoi polygon, which
better utilizes the sensor’s sensing circle. Compared with
VOR, Minimax considers more information and it is more
conservative. Compared with VEC, Minimax is “reactive”;
it fixes the hole more directly by moving toward the farthest
Voronoi vertex.

The Minimax point is the center of the smallest enclosing
circle of the Voronoi vertices and can be calculated by the
algorithms described in [19], [27], [29]. In the deployment
protocol using Minimax, we also specify the maximum
moving distance and do oscillation control as in VOR.

We run Minimax on the same initial deployment as
shown in Fig. 2a. After round 1 and round 2, the coverage is
improved to 92.7 percent and 96.5 percent, respectively.

3.4 Termination

The algorithm terminates naturally based on the movement-
adjustment heuristic (explained in Section 3.1), which does
not allow sensors to move unless the local coverage can be
increased. The total coverage, bounded by 100 percent,
increases as the local coverage increases. Based on the
attributes of Voronoi diagram, the local coverage increase of
one sensor does not affect the local coverage of another
sensor. Thus, sensors will stop naturally when the coverage
cannot be increased. The formal proof is shown in
the Appendix.

In some applications, the coverage requirement may be
met without achieving maximum coverage. In these cases, it
may be prudent to terminate the deployment process before
the maximum coverage is reached to save power and
reduce the deployment time. To terminate the deployment
procedure earlier, we use a threshold �, defined as the
minimum increase in coverage below which a sensor will
not move. With a larger �, the deployment will finish earlier.
When � ¼ 0, sensors stop when the best coverage is
obtained.

3.5 Optimizations

3.5.1 Dealing With Message Loss

Hello messages may be lost due to collisions. Consequently,
sensors may fail to know the existence of some Voronoi
neighbors and mistakenly determine coverage holes. To
address this problem, we associate each item in a sensor’s
neighbor list with a number which indicates the freshness of
this item, that is, for how many rounds this neighbor has
not been heard. When constructing the Voronoi polygon,
sensors only consider the sensors in its neighbor list with
certain freshness. For example, only sensors that have been
heard within the last two rounds can be considered when
constructing the Voronoi polygon. Supposing the prob-
ability of message loss is 5 percent, the probability that a
message is lost two consecutive times is 0.25 percent.
Therefore, if a sensor does not hear a Hello message from a
neighbor for two consecutive cycles, it can assume that the
neighbor has moved and be correct with a 99.75 percent
chance.

This solution introduces a new problem. If a sensor
actually moves to a new place, its previous neighbors
cannot hear it. If these old neighbors still consider this
sensor in their formation of the Voronoi polygons until the
freshness threshold is violated, it will prolong the deploy-
ment process. To address this problem, we propose that a
sensor broadcasts its new location before it moves so that its
neighbors can react promptly if a new hole is generated by
its leaving.

3.5.2 Dealing with Position Clustering

In some cases, the initial deployment of sensors may form
clusters, as shown in Fig. 6, resulting in low initial coverage.
In this case, sensors located inside the clusters cannot move
for several rounds, since their Voronoi polygons are well
covered initially. This problem prolongs the deployment
time, as is shown in Fig. 6, in which some sensors are still
clustered together after the sixth round. To reduce the
deployment time in this situation, we propose an optimiza-
tion which detects whether too many sensors are clustered
in a small area. The algorithm “explodes” the cluster to
scatter the sensors apart. Each sensor compares its current
neighbor number to the neighbor number it will have if
sensors are evenly distributed. If a sensor finds the ratio of
these two numbers is larger than a threshold, it concludes
that it is inside a cluster and chooses a random position
within an area centered at itself which will contain the same
number of sensors as its current neighbors in the even
distribution. The explosion algorithm only runs in the first
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round. It scatters the clustered sensors and changes the
deployment to be close to random.

4 DEPLOYMENT PROTOCOLS WITH VIRTUAL

MOVEMENT

The basic protocols require sensors to move iteratively,
eventually reaching the final destination. Other approaches
can be envisioned in which the sensors move only once to
their destination to minimize the sensor movement. One
such approach is to let sensors stay fixed and obtain their
final destinations by simulated movement. With the same
round-by-round procedure, sensors calculate their target
locations, virtually move there, and exchange these new
virtual locations with the sensors which would be their
neighbors as if they had actually moved. The real move-
ment only happens at the last round after final destinations
are determined.

We did not deploy this alternative method for two
reasons. First, this approach is susceptible to poor perfor-
mance under network partitions, which are likely to occur
in a sensor deployment. If a network partition occurs, each
partition will exercise the movement algorithms without
knowledge of the others. Consequently, the obtained final
destination is not accurate and the required coverage cannot
be reached. Using real movement, the network partitions
will be healed allowing all sensors to be eventually
considered in the algorithm. A second reason is the high
communication overhead. To guarantee logical neighbors
are reached, a network-wide broadcast is needed when
using simulated mobility. If this network-wide broadcast is
implemented by gossiping, the message complexity is at
minimum 2rn2 (here, r is the number of rounds needed and
n is the number of sensors in the network). Using actual
mobility as in the basic protocols, a much lower message
complexity, 2rn, is sufficient.

To get balance between movement and message com-
plexity, we propose to let sensors do virtual movement
when the communication cost to reach the logical Voronoi
neighbors is reasonable, and physical movement otherwise.
The challenge is to determine if a sensor can reach its logical
neighbors with reasonable communication cost. We pro-
pose the following heuristics.

First, if a sensor’s distance to its farthest Voronoi vertex
is shorter than half of the communication range, it must
know all its Voronoi neighbors. In this case, one hop
broadcast (same in the basic protocols) is enough to
exchange the location information with its logical neighbors
and physical movement is not necessary. Otherwise, it is
possible that some Voronoi neighbors are out of the
communication range. To get the locations of these Voronoi
neighbors, sensors request their neighbors within the
communication range to broadcast their neighbor lists, thus
obtaining the logical positions of sensors located within two
broadcast hops. When the distances between the physical
locations of sensors and their farthest Voronoi Vertices are
larger than two times the maximum moving distance,
sensors should move physically.

In realization, we divide the discovery phase into two
subphases. In the first subphase, sensors broadcast hello
messages; in the second subphase, sensors broadcast the
locations of known neighbors. In one round, if a sensor’s
distance to its farthest Voronoi vertex is larger than half of
the communication range, it will calculate the target
location as in the basic schemes and do logical movement.
In the next round, it will set a flag in the hello messages,

indicating that it wants its neighbors to broadcast their

neighbor list. Any sensor that receives a hello message with

such a flag will broadcast its neighbor list in the second

subphase of the discovery phase. In this way, the message

complexity is at most two times the basic scheme in one

round. The flag will not be reset until the sensor moves

physically. Sensors move physically under two conditions:

One is that its physical position is two times the maximum

moving distance to its farthest Voronoi vertex, as discussed

above. The second condition is that a sensor’s logical

position has not changed for several rounds. Then, the

sensor can determine that it has obtained its final location

and it can move. The formal description of the protocol with

the virtual movement is shown in Fig. 7.
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Fig. 7. Virtual movement protocols at si.



5 PERFORMANCE EVALUATIONS

5.1 Objectives, Metrics, and Methodology

We implement our deployment protocols in the ns-2
(version 2.1b9a), a standard network simulator. Our
objectives in conducting this evaluation study are threefold:
first, testing the effectiveness of our protocols in providing
high coverage; second, by comparing VEC, VOR and
Minimax, and comparing the basic protocols and the virtual
movement protocols, giving some insight on choosing
protocols in different situations; finally, studying the
effectiveness of controlling the trade-off among various
metrics by adjusting parameters.

We analyze the performance of our protocols from
two aspects: deployment quality and energy consumption.
Deployment quality is measured by the sensor coverage and
the time (number of rounds) to reach this coverage.
Deployment time is determined by the number of rounds
needed and the time of each round. The duration of each
round is primarily determined by the moving speed of
sensors, which is the mechanical attribute of sensors. Thus,
we only use the number of rounds to measure the
deployment time. Energy consumption includes two parts,
mechanical movement and communication. Message com-
plexity is used to measure the energy consumed in commu-
nication. As for movement, the energy consumed in moving a
sensor n meters consists of two parts: starting/braking
energy and moving energy. Therefore, we use moving
distance and the number of movement as the metrics.

We run simulations under different sensor densities,
which determines the sensor coverage that can be reached
and the difficulty to reach it. In a 100 m� 100 m target field,
we distribute four different numbers of sensors, ranging
from 120 to 180, in increments of 20 sensors. The initial
deployment follows the random distribution. Most simula-
tion results are under the termination condition that � is
equal to 1 percent divided by the number of sensors. To
evaluate each metric under different parameter settings, we
run 10 experiments based on different initial distribution
and calculate the average results.

We choose 802.11 as the MAC layer protocol and DSDV
as the routing protocol. The physical layer is modeled after
the RF MOTE from Berkeley, with 916.5 MHz OOK 5 kbps
as the bandwidth and 20 meters as the transmission range.

Based on the information from [1], we set the sensing range
to be 6 meters. This is consistent with other current sensor
prototypes, such as Smart 1 (University of California,
Berkeley), CTOS dust, and Wins (Rockwell) [2].

5.2 Simulation Results

5.2.1 Coverage

Fig. 8 shows the coverage obtained when the coverage
increase threshold � is equal to 1 divided by the number of
sensors. From the figure, we can see that the coverage is
greatly increased by all three algorithms compared to the
initial random distribution. For example, when 140 sensors
are deployed, Minimax and VOR can increase the coverage
to be more than 98 percent from 77.7 percent. In contrast, to
obtain the same coverage under random deployment, on
average, 340 sensors are required.

Also, by analyzing the trace of the basic protocols, we
find the coverage increases very quickly during the first
several rounds. For example, in most of the cases, the
coverage can be increased to more than 85 percent after the
first round when 120 sensors are deployed and more than
90 percent in higher sensor densities. In the virtual
movement protocols, actual coverage increase happens
after the real movement.

Among VEC, VOR, and Minimax, VEC performs the
worst. The primary reason is that VEC is sensitive to the
initial deployment. Consider an extreme situation in which
sensors are located in the same line with equal spacing. In
this case, no sensor will move, since the virtual forces offset
each other, though there are large coverage holes. If the
sensors are located in similar relative positions initially,
VEC does not perform well. In addition, VEC neither
considers coverage holes nor utilizes any geometric
information from the Voronoi polygons when choosing
the target locations. It tries to reach relatively balanced
positions among the sensors, despite the difficulty of
obtaining an exact, global, even distribution from only local
information.

VOR and Minimax achieve quite similar coverage. They
both move to heal the holes directly. VOR is more greedy and
may move more than needed, thus generating new coverage
holes. But finally, VOR will move sensors back to the correct
positions if coverage can be increased by doing so.
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Fig. 8. Coverage. (a) Basic protocols. (b) Virtual movement.



Between virtual movement protocols and basic proto-
cols, virtual movement protocols achieve almost the same
coverage as the basic protocols, as expected. We can
conclude that using virtual movement will not affect the
achieved coverage.

5.2.2 Energy Consumption

Fig. 9 and Fig. 10 show the moving distance and the number
of movements, respectively. Fig. 11 shows the message
complexity. Here, message complexity is defined as the
number of messages exchanged when the protocol termi-
nates. To evaluate the energy consumption, we normalize

the moving distance and the number of movements into

message complexity. That is, with the same amount of

energy consumed in movement, how many messages can

be transmitted. Calculated from Robomote [26], approxi-

mately, to move a sensor one meter consumes a similar

amount of energy as transmitting 300 messages. The energy

consumption in starting/braking is varied in different

systems. Fig. 12 shows the unified energy consumption

when the starting/braking to one meter moving energy

consumption ratio is 1. (We also have plotted the case when

the ratio is 4. The results are similar to Fig. 12, so we do not
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Fig. 9. Moving distance. (a) Basic protocols. (b) Virtual movement.

Fig. 10. The number of movements. (a) Basic protocols. (b) Virtual movement.

Fig. 11. Message complexity. (a) Basic protocols. (b) Virtual movement.



show them here.) From the figure, we can conclude that
virtual movement protocols are much more energy-efficient
than the basic protocols. The improvement is larger when
the starting energy is high. Among the three algorithms to
calculate the target locations, Minimax is always the most
energy-efficient, except when the sensor density is quite
low. At low sensor density, VEC consumes the least energy.
VEC pushes sensors into relatively regular positions and
does not perform the fine adjustment of their locations to
reach high coverage. Therefore, VEC consumes the least
energy and reaches the lowest coverage among these three
algorithms under low density.

Between VOR and Minimax, Minimax moves less in
most cases. Minimax is proposed to address the aggressive
feature of VOR and the simulation results verify its
effectiveness. Because Minimax is sensitive to the construc-
tion of Voronoi polygon, it is sensitive to message loss. In
our previous paper [10], we showed that if message loss is
not accounted for, Minimax has the largest moving
distance. This is because when message loss occurs, the
calculated Voronoi polygon is not correct.

From Fig. 9, we can observe an interesting phenomenon
of VEC: The moving distance is similar under different
sensor densities. This is because VEC fixes coverage holes
by pushing sensors into a relatively even distribution. In
VEC, sensors are pushed by the virtual forces, which are
determined by the difference between the average distance
of sensors when they are evenly distributed and the
individual interdistances. Both values increase with a low
density and decrease with a higher density. Thus, VEC is
not sensitive to sensor density. In contrast, Minimax and
VOR relocate sensors by measuring the coverage holes,
which are larger under lower density and smaller under
high density. Therefore, the moving distance in VOR and
Minimax is decreased with a higher sensor density.

Fig. 10 shows the number of movements using basic
protocols and virtual movement protocols, respectively. We
can see that the number of movements is greatly reduced by
using virtual movement. In particular, sensors move about
once when the number of nodes is more than 140, and less
than 1.5 times when the number of nodes is 120. This shows
the effectiveness of the heuristic to determine when to move
physically. In the basic protocols, sensors move several

times on average. They move less with a higher node

density and fewer coverage holes.
As described in Section 2.2, path planning is required to

overcome obstacles. We expect a greater negative impact on

moving distance when obstacles must be overcome on the

protocols that require the larger number of movements.
Fig. 11 shows the message complexity. Message com-

plexity is primarily determined by the number of rounds to

finish the deployment process and the number of messages

in each round. Within one round, VEC transmits more

messages than VOR and Minimax since sensors need to

send one message to notify neighbors that their Voronoi

polygons are well covered. In addition, VEC needs more

rounds to terminate (explained in the next section). There-

fore, VEC has the highest message complexity. Between

Minimax and VOR, Minimax needs more rounds to

terminate and has higher message complexity.

5.2.3 Convergence Time

In this section, we evaluate the convergence time of our

protocols. We set � to be 0. Fig. 13 shows the coverage in

each round when the number of sensors is 140. From the

figure, we can see that the coverage increases very quickly

during the first several rounds. Here for each algorithm, we

run 50 experiments. After 10 rounds, the algorithms achieve

at least 98 percent of the best coverage they can reach in all

these experiments, and the algorithms achieve at least

99 percent of the best coverage, in about 99.33 percent of
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Fig. 12. Unified energy consumption: Energy consumed in starting/braking is equal to moving one meter. (a) Basic protocols. (b) Virtual movement .

Fig. 13. Convergence time.



these experiments. From the experiments, we can conclude
that our algorithm can quickly converge.

Our algorithm resembles the steepest descent algorithm
[16], in that both try to move along the direction that is
locally optimal. Unfortunately, the convergence theory of
steepest descent is not satisfactory from a theoretical point
of view. It is shown in [16] that it converges if the objective
function satisfies certain conditions and proper step lengths
are taken. However, no result on the convergence rate of
steepest descent for general objective functions can be
found in the literature. For most applications, steepest
descent is the best choice if no global information of the
objective function is available.

5.2.4 Termination

Fig. 14 shows deployment time under different sensor
density. As expected, virtual movement protocols require
more time to terminate. In virtual movement, each sensor
waits several rounds before real movement.

In general, the deployment procedure can be roughly
divided into two parts: One is overall redistribution, which
moves a group of sensors from a dense area to a sparse area to
achieve a relatively even distribution of sensors. Another is
the minor adjustment of positions in the local area to achieve
better coverage. When the sensor density is not high, time
consumed in the overall redistribution is the major factor of
deployment. When the sensor density is very high, no large-
scale movement is needed and the position adjustment is the
major factor. VOR is good at the overall redistribution
because of its aggressive feature. It terminates the quickest in
low or medium sensor density. Minimax calculates the target
locations to heal coverage holes most accurately, and it

finishes the quickest in very high density. VEC pushes
sensors away from dense area by virtual force. The sensors in
a sparse area may not move for a long time since no sensor is
present to push them. These sensors only move after the
sensors from a dense area are propagated into their area. This
propagation process may take a long time.

5.2.5 Impact of Coverage Increase Threshold �

In this section, we study the effectiveness of controlling the
trade-off between coverage and deployment time by
adjusting �, the coverage increase threshold. Table 1 shows
the termination round, coverage reached, and other metrics
for different � for the virtual movement protocols. We can
see that, with a smaller �, a higher coverage can be reached,
while the deployment cost and the deployment time are
also increased. By properly setting this threshold, we can
save time and energy by trading off a small amount of
coverage. For example, in Minimax, when � is increased
from 0.5 percent to 1 percent, the deployment time can be
shortened by seven rounds (32 percent), while the ultimate
coverage achieved is only reduced by 0.4 percent.

Among VEC, VOR, and Minimax, the termination time is
quite different when � is small and similar when � is larger.
For example, when � is equal to 2 percent, the three algor-
ithms terminate in a similar time. As for other metrics,
Minimax performs the best. Therefore, Minimax is the best
choice if � can be set to be a relatively large number.

6 CONCLUSION AND DISCUSSIONS

This paper addressed the problem of moving sensors in a
target field to get high coverage. Based on Voronoi
diagrams, we designed two sets of distributed protocols
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Fig. 14. Termination. (a) Basic protocols. (b) Virtual movement.

TABLE 1
Impact of � (n ¼ 140)

R is the round number when all sensors stop. E measures the effectiveness of moving, which is the ratio of actual moving distance to the distance
between the initial position and the final position. M shows the average number of movements of sensors. C and D refer to the coverage and to the
moving distance, respectively. These values are obtained in the stopping round R.



to iteratively move mobile sensors from densely deployed
areas to sparsely deployed areas. Simulation results verified
the effectiveness of our protocols and provided a baseline
for performance under ideal conditions.

The virtual movement protocols can significantly reduce
mechanical movement with a cost of less than two times an
increase in the message complexity over the basic protocols.
In each set of the protocols, three algorithms to calculate the
target location were proposed: VEC, VOR, and Minimax.
Minimax is the best choice in most cases. VEC moves least
at a low sensor density and can be deployed when the
coverage requirement is not high. VOR terminates the
earliest when the sensor density is not very high, and it can
be deployed when both the deployment time requirement
and coverage requirement are strict.

Below, we discuss some open issues.

6.1 Distributed Scheme versus Centralized Scheme

To address the problem of mobile sensor deployment, we
propose that sensors calculate their target locations in a
distributed fashion. We did not deploy a centralized
approach for the following reasons. First, a central server
architecture may not be feasible in some deployments.
Further, the centralized approach suffers from the problem
of a single point of failure.

Although a centralized approach is not feasible for many
scenarios, it is interesting to study it and compare it with
our distributed algorithms. We consider a centralized
approach in an ideal case, in which the optimal positions
to place sensors is decided a priori. For n sensors, there are
n regular positions. It does not matter which sensor is
placed in which position. There exists a central server,
which can collect the locations of sensors and direct them to
move, such that the average moving distance is minimized.
Basically, this is a biparty matching problem and the classic
Hungarian method [23] can be used to calculate how to
allocate sensors from their initial positions to the target
locations such that the moving distance is minimized. We
have compared the average moving distance of our
distributed protocols with this ideal case. When the node
density is lower than about 110 sensors per 100 m� 100 m,
the centralized scheme outperforms our scheme; otherwise,
our distributed algorithms are better. (Here, we choose
Minimax under virtual movement for comparison.) This is
because in our scheme, sensors only move when there are
coverage holes, while in the centralized scheme, sensors
always move to an optimal point even if it does not improve
coverage. In our scheme, when the node density is high,
sensors need only move a short distance to reach high
coverage. Under low density, when most sensors are
required to move, the centralized scheme results in a lower
average moving distance. In terms of coverage, the
centralized approach can always guarantee the optimal
coverage since the optimal positions are decided a priori.

6.2 Sensing Area

In this paper, the sensing area of each sensor is assumed to
be a disk with radius 6 m. This is the ideal case, which
provides us with a baseline of the sensor placement
problem. In future work, we will address varying sensing
ranges. Here, we discuss these issues.

Our protocols can deal well with the case of a larger or
smaller sensing radius if the sensing area is uniformly a
disk. The performance of the protocols depends more on
the ratio of communication range to sensing range than the
absolute sensing range. As the sensing range decreases with
regard to the communication range, our protocols will
perform very well because they can accurately construct the
Voronoi diagrams. As the sensing range increases, we need
to enlarge the broadcast hops to better construct the
Voronoi polygons.

If the sensing area is an irregular shape, instead of a disk,
sensors can still check their Voronoi polygons to determine
the coverage holes. In this case, we can decrease the sensing
range used in our protocols to account for the reduced
coverage. In future work, we will study our protocol’s
sensitivity to the sensing area.

6.3 Sensitivity to Communication Range

In our previous paper [10], we evaluated the impact of
communication range on the basic protocols and found that
when communication is more than two times of the sensing
range, the performance is similar to the results presented
here (6 m sensing range and 20 m communication range).
This requirement is reasonable and most hardware can
satisfy it. In situations in which this requirement cannot be
satisfied, we can increase the broadcast hop limit. In the
virtual movement protocols, the broadcast hop can be
increased accordingly if the communication range is short
and the performance will not be affected.

APPENDIX A

We denote the following terms for the proof. The location of
sensor si in the rth round is denoted as ½xðrÞi ; y

ðrÞ
i �. The

Voronoi polygon of si, Gi, in the rth round is denoted
as G

ðrÞ
i . Gi changes in different rounds if si or its neighbors

move. The area of the covered part of G
ðrÞ
i in the rth round

is denoted as A
ðrÞ
i , and that in the ðrþ 1Þth round is denoted

as ÂA
ðrÞ
i . G

ðrÞ
i is a fixed polygon in the target field, but the

covered portion of G
ðrÞ
i may be changed in different rounds

since sensors may move and they cover different areas if
they move. Therefore, ÂA

ðrÞ
i is not equal to A

ðrÞ
i . Also, ÂA

ðrÞ
i is

not equal to A
ðrþ1Þ
i . They refer to the covered area of

different polygons. The area of the covered portion of G
ðrÞ
i

by a sensor located at ½x; y� is denoted as A
ðrÞ
i ð½x; y�Þ. The

area of the covered portion in the whole target field in the
rth round is A

ðrÞ
total.

Lemma 1. (a) A
ðrÞ
total ¼

Pn
i¼1 A

ðrÞ
i . (b) A

ðrþ1Þ
total ¼

Pn
i¼1 ÂA

ðrÞ
i .

Proof. The Voronoi diagram is a partition of the target field,
so (a) is obvious. For the same reason, (b) is also correct.
The summation of the covered area of partitions is the
whole covered area in the target field, whatever a
partitioning method is used. Therefore, the summation
of the covered area of the Voronoi polygons in the
previous round is also the whole covered area in the
current round. tu

Lemma 2. A
ðrÞ
i ¼ A

ðrÞ
i ð½x

ðrÞ
i ; y

ðrÞ
i �Þ.

Proof. This is the direct result of the attribute of Voronoi
diagram. Every point within G

ðrÞ
i is closer to ½xðrÞi ; y

ðrÞ
i �

than to any other sensor. Any point not covered by si is
also not be covered by any other sensor. tu
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Theorem 1. A
ðrþ1Þ
total > A

ðrÞ
total before all sensors stop moving.

Proof. At the ðrþ 1Þth round, there may be areas in G
ðrÞ
i

which are not covered by si but are covered by other
sensors, because the current Voronoi polygon of si is
G
ðrþ1Þ
i but not G

ðrÞ
i . Therefore,

ÂA
ðrÞ
i � A

ðrÞ
i ð½x

ðrþ1Þ
i ; y

ðrþ1Þ
i �Þ: ð1Þ

By enforcing the movement adjustment heuristics (de-
scribed in Section 3.1), our algorithms guarantee that, if
si moves,

A
ðrÞ
i ð½x

ðrþ1Þ
i ; y

ðrþ1Þ
i �Þ > A

ðrÞ
i ð½x

ðrÞ
i ; y

ðrÞ
i �Þ: ð2Þ

Certainly, if si does not move,

A
ðrÞ
i ð½x

ðrþ1Þ
i ; y

ðrþ1Þ
i �Þ ¼ AðrÞi ð½x

ðrÞ
i ; y

ðrÞ
i �Þ; ð3Þ

because ½xðrþ1Þ
i ; y

ðrþ1Þ
i � ¼ ½xðrÞi ; y

ðrÞ
i �.

From (1), (2), and (3),

Xn
i¼1

ÂA
ðrÞ
i >

Xn
i¼1

A
ðrÞ
i ð½x

ðrÞ
i ; y

ðrÞ
i �Þ ð4Þ

if some sensor moves in the rth round.
From Lemma 2,

A
ðrÞ
i ¼ A

ðrÞ
i ð½x

ðrÞ
i ; y

ðrÞ
i �Þ: ð5Þ

From (4) and (5),

Xn
i¼1

ÂA
ðrÞ
i >

Xn
i¼1

A
ðrÞ
i ð6Þ

if some sensor moves in the rth round.
By Lemma 1,

A
ðrÞ
total ¼

Pn
i¼1 A

ðrÞ
i

A
ðrþ1Þ
total ¼

Pn
i¼1 ÂA

ðrÞ
i :

(
ð7Þ

From (6) and (7),

A
ðrþ1Þ
total > A

ðrÞ
total ð8Þ

if some sensor moves in the rth round. tu

Corollary 1. Our distributed algorithms are convergent, and
thereby terminate naturally.

Proof. Following from Theorem 1 and the fact that A
ðrÞ
total is

upper bounded by the total area of the target field, our
distributed algorithms converge and terminate naturally.
All sensors stop moving when no coverage increase can
happen. tu
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